As the power and heat output of modern CPUs climb ever higher and the interest in compact, passively cooled devices grows, there is an urgent need for thinner and more effective vapor chamber technologies. Nanostructured wick technologies based on oxide and organic nanowires have been proposed as a method of improving heat pipe performance in such applications. This work performs finite difference simulations of a 2D heat pipe accounting for variable porosity in the wick. For heat fluxes of 10 and 100 W/cm2, we find that temperature difference between the evaporator and condenser regions decreases by 10%, which is promising for spreading thermal energy. We find that spatially varying porosity yields improvements in spreading heat throughout the entire wick region. Finally, we observe that boiling is depressed in the evaporator region. These results verify the benefits of nanostructured wicks. This simulation tool provides the groundwork for future studies of 3D flat package heat pipes.

This content is only available via PDF.
You do not currently have access to this content.