It is very important to measure fluid temperature in research and industrial fields. However, there are no devices with high-response measurement. In this study, a sensor system is proposed to measure the temperature with very high response using interferometry. The sensor for temperature measurement utilizes the difference in measurement length between two laser beams. Both are the test beams, and there is no reference beam. The two beams pass mostly through closely arranged paths; therefore, the effect of mechanical vibration on the two test beams is expected to be very small. The laser beam was introduced through a selfoc micro lens (SML) into a polarization-maintaining fiber connected with a sensor part. The beam emitted from another SML was divided into two. Both beams enter a quartz block and are reflected at the corner to change direction by an angle of a quarter pai radian. They then pass through the test section although the lengths of the two beams are different in the measurement region. This sensor was installed on a side wall of a vessel. Water was poured into the vessel and stirred with a hot magnetic stirrer. The temperature near the sensor was also measured with a thermocouple as a reference. This paper focuses on the confirmation and evaluation of this system of temperature measurement. When the direction of the fringe shift with two photo-detectors was judged, the direction of the temperature could be distinguished. One feature of this sensor is that it minimizes the effect of the thermal boundary layer. If the condition of the fluid near the test section is uniform, both beams have almost the same boundary layers. Then, both thermal boundary layers are expected to be cancelled because the length of the test section is the difference between both beams. As a result, it was confirmed that this sensor system is useful for detecting changes in water temperature.

This content is only available via PDF.
You do not currently have access to this content.