In this paper, we present an extension of the level set method from 2D into 3D for solving multiphase flow problems using distributed parallel computing. The model solves the incompressible Navier-Stokes equations to study the behavior of a bubble immersed in a thin liquid film at microscale as found in a spray cooling environment. Since modeling all aspects of spray cooling, including nucleation, bubble dynamics, droplet impact, convection and thin film evaporation is very difficult at this time; these phenomena have been divided and studied separately in order to study the heat transfer behavior of each phenomenon individually. We studied the droplet impact effect as seen in spray cooling by our 3D multiphase model in earlier studies. Through the 3D multiphase model this study simulates the dynamics of a nucleating bubble in a thin liquid film that merges with the ambient atmosphere above the film. In this study we did not consider the droplet impact effect to concentrate on the vapor bubble dynamics in thin liquid film and its effect on heat transfer. The effect of convective flow is not considered to keep the 3-D model simple. However the 2D model was modified to simulate the effect that a horizontal flow of constant velocity has on the growth and detachment of a nucleating bubble and discussed in the second part of the paper. This study illustrates the importance of considering the convective flow effect in our 3-D multiphase flow model in future with droplet impact for spray cooling modeling studies.

This content is only available via PDF.
You do not currently have access to this content.