Environmental pollution from gas turbine engines is becoming a serious concern recently because of the steep growth in the aviation sector globally. Therefore, potential alternative fuels which can partially or fully replace fossil-based jet fuel are getting significant attention. However, the search for suitable candidate fuels which can fulfill the requirement in terms of fuel properties and combustion performance is continuing. The present study deals with an experimental investigation of atomization characteristics of Jet A-1, butanol, and butyl butyrate in quiescent atmospheric air. A high-speed imaging technique has been adopted to make a comparison of ligament breakup characteristics and droplet formation of these alternative biofuels with that of Jet A-1. Various fuel properties, including density, viscosity, and surface tension, are compared. An effort is made to understand how the variation in fuel properties influences the atomization mechanism of each fuel. The surface tension seems to be similar for these three fuels with a slight variation in density. However, there is a significant variation in viscosity. Viscosity appears to play a major role in the difference observed in ligament length and droplet formation. Due to the higher viscosity of butanol, the droplet formation seems to be delayed compared to Jet A-1, whereas the lower viscosity of butyl butyrate promotes faster droplet formation. The effect of blending of these biofuels with Jet A-1 on atomization characteristics will be compared with that of Jet A-1.

This content is only available via PDF.
You do not currently have access to this content.