In recent years, development of new manufacturing technologies like additive manufacturing has made it possible to make complex cooling structures to improve the efficiency of jet impingement. Present paper considers hybrid-linked jet impingement cooling channels which involve both parallel linked jets and serial linked jets. Systematic analysis was conducted with the aid of Computational Fluid Dynamics and Response Surface Methodology, focusing on the influence of topology on performance. An optimization platform was established with aid of the regressed database and the Genetic Algorithm. Of particular interest is the influence of optimization strategies on results. Results obtained indicates that the topology number developed in this study works well with the Response Surface Methodology. Topology can be considered to be a new degree of freedom of jet impingement design. Among the tested topologies, serial linked jet impingement has significantly higher heat transfer and pressure drop than the traditional parallel linked jet impingement. In the first optimization strategy, mass flow rate was used as the objective function while heat transfer and pressure drop were constrained. Optimized results under this strategy show consistent parameters and purely serial linked topology for all cases, due to the high cooling efficiency of serial linked jets. In the second optimization strategy, pressure drop was minimized while heat transfer and mass flow rate were constrained. Contrast with the first strategy, optimal results of this strategy have different topologies under different constraint conditions, which is caused by the complex influence of geometric parameters on pressure drop. Such results indicate the capability of hybrid-linked jet impingement to fit a wide various requirement by changing topology.

This content is only available via PDF.
You do not currently have access to this content.