This paper delves upon the Aero-Thermodynamic performance and Mechanical design aspects of microturbines comprising a single shaft radial compressor driven by a single stage radial inflow turbine with a combustor and recuperator sized to directly drive a permanent magnet type high speed generator with an output power in the 5–10KW bracket and commensurate rotational speeds in the 100–200 krpm range.

It is initially shown that stipulation of a cycle design point output power, turbine inlet or exit temperatures, and compressor pressure ratio delivering optimum thermal efficiency inherently confines rotational speed selection, and that independent rotational speed choice away from those identified optimum speed regimes may result in cycle thermal efficiency compromises. Confining the cycle analysis within temperature limits of cost competitive superalloys and foil materials reveals that the achievement of optimum thermal efficiency is more dependent on temperature at the turbine exit rather than at inlet.

Albeit the choice of rotational speed is of particular importance in the compressor and turbine design it moreover is dominant in the mechanical design of the rotating assembly in terms of high speed bearing life and shaft dynamic stability.

As a consequence rotating assembly and bearing design options suitable for direct drive permanent magnet generators are reviewed and recommendations offered as to the prime candidate assemblies for future microturbines in the 5.0 to 10.0 kW power output range.

This content is only available via PDF.
You do not currently have access to this content.