Due to their high efficiency and flexibility, aeroderivative gas turbines were often considered as a development basis for intercooled engines, thus providing better efficiency and larger power output. Those machines, originally studied for natural gas, are here considered as the power section of gasification plants for coal and heavy fuels. This paper investigates the matching between intercooled gas turbine, in complex cycle configurations including combined and HAT cycles, and coal gasification processes based on entrained-bed gasifiers, with syngas cooling accomplished by steam production or by full water-quench. In this frame, a good level of integration can be found (i.e. re-use of intercooler heat, availability of cool, pressurized air for feeding air separation units, etc.) to enhance overall conversion efficiency and to reduce capital cast. Thermodynamic aspects of the proposed systems are investigated, to provide an efficiency assessment, in comparison with mare conventional IGCC plants based on heavy-duty gas turbines. The results outline that elevated conversion efficiencies can be achieved by moderate-size intercooled gas turbines in combined cycle, while the HAT configuration presents critical development problems. On the basis of a preliminary cost assessment, cost of electricity produced is lower than the one obtained by heavy-duty machines of comparable size.

This content is only available via PDF.