The spray characteristics of six simplex atomizers are examined in a pressure vessel using a standard light diffraction technique. Attention is focused on the effects of liquid properties, nozzle flow number, spray cone angle, and ambient air pressure on mean drop size and drop-size distribution. For all nozzles and all liquids it is found that continuous increase in air pressure above the normal atmospheric value causes the SMD to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the measurement technique employed and the various competing influences on the overall atomization process. The basic effect of an increase in air pressure is to improve atomization, but this trend is opposed by contraction of the spray angle which reduces the relative velocity between the drops and the surrounding air, and also increases the possibility of droplet coalescence.

This content is only available via PDF.