
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 	
99-G1-^4345 E. 47th St., New York, N.Y. 10017

S	 The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings of the Society or of is Divisions or
®	 Sea+ons, or printed in its publications. Discussion is printed only if the paper is published in an ASME Journal. Authorization to, photocopy

for internal or personal use is granted to libraries and other users registered with the Copyright Clearance Center (CCC) provided
$3/article or $4/page is paid to CCC, 222 Rosewood Dr., Danvers, MA 01923. Requests for special permission or bulk reproduction
should be addressed to the ASME Technical Publishing Department.

Copyright 0 1998 by ASME
	

All Rights Reserved
	

Printed in U.SA

REDUCED ORDER MODELING AND VIBRATION ANALYSIS OF

MISTUNED BLADED DISK ASSEMBLIES WITH SHROUDS

Ronnie Bladh 	 Matthew P. Castanier 	 Christophe Pierre
Graduate Student	 Assistant Research Scientist	 Professor

Department of Mechanical Engineering and Applied Mechanics
The University of Michigan
Ann Arbor, MI 48109-2125

USA

ABSTRACT

This paper presents important improvements and extensions to a com-
putationally efficient reduced order modeling technique for the vibration
analysis of mistuned bladed disks. In particular, this work shows how
the existing modeling technique is readily extended to turbomachinery
rotors with shrouded blades. The modeling technique employs a com-
ponent mode synthesis approach to systematically generate a Reduced
Order Model (ROM) using component modes calculated from a Finite
Element Model (FEM) of the rotor. Based on the total number of de-
grees of freedom, the ROM is typically two or three orders of magni-
tude smaller than the FEM. This makes it feasible to predict the forced
response statistics of mistuned bladed disks using Monte Carlo simula-
tions. In this work, particular attention is devoted to the introduction of
mistuning into the ROM of a shrouded assembly. Mistuning is modeled
by projecting the mistuned natural frequencies of a single, cantilever
blade with free shrouds onto the harmonic modes of the shrouded blade
assembly. Thus, the necessary mistuning information may be measured
by testing individual blades.

1. INTRODUCTION

Based on the nominal design, a bladed disk assembly is a rotation-
ally periodic structure. If it is assumed that each sector is identical, then
the theory of cyclic symmetry may be used to analyze the dynamics of
the entire structure based on, say, a finite element model of one sector
(Joseph, 1981; Elchuri et al.,1984; Hitchings and Singh, 1987). In prac-
tice, however, there are small differences among the structural properties
of individual blades – due to manufacturing tolerances, material devia-
tions, and non-uniform operational wear. These small, random discrep-
ancies, commonly referred to as mistuning, are unavoidable. Further-
more, mistuning destroys the cyclic symmetry of the bladed disk assem-
bly, and it can drastically affect the vibratory behavior of the structure.
In particular, certain mode shapes may become spatially localized. As a
result, a blade may experience forced response amplitudes and stresses

that are substantially larger than those predicted by a tuned analysis.
The effects of mistuning on blade vibrations have been documented

by experiments, as well as by analyses of representative lumped pa-
rameter models using numerical, statistical, and perturbation methods
(Wagner, 1967; Dye and Henry, 1969; Ewins, 1969; Ewins, 1973; El-
Bayoumy and Srinivasan, 1975; Griffin and Hoosac, 1984; Wei and
Pierre, 1988a and 1988b; Lin and Mignolet, 1997). See Srinivasan
(1997) for a survey of the literature. More recently, there have been ef-
forts to use component mode synthesis (Irretier, 1983; Zheng and Wang,
1985; Castanier et al., 1997) and receptance techniques (Yang and Grif-
fin, 1997) cotfibined with finite element models in order to obtain more
accurate models of mistuned bladed disks.

The studies by Castanier et al. (1997) and Yang and Griffin (1997)
are notable because specially-tailored techniques were employed to ob-
tain, in a systematic fashion, highly reduced order models from parent
finite element models of bladed disks. In particular, significant order
reduction was achieved by reducing the number of degrees of freedom
(DOF) needed to connect the disk and blade components. Yang and
Griffin treated the disk-blade interface as having only rigid body mo-
tion, which reduced the necessary DOF to six for each blade. However,
this approximation did cause some loss in accuracy in frequency regions
that feature disk-blade interaction. In (Castanier et al., 1997), a novel
component mode technique was developed to eliminate the so-called
constraint modes.

The technique of Castanier et al. (1997) has been applied to the anal-
ysis of the forced response of mistuned bladed disks (Kruse and Pierre,
1996a), and it has been validated using a finite element model of an in-
dustrial rotor (Kruse and Pierre, 1996b). However, these investigations
concentrated on unshrouded bladed disk assemblies. In this paper, the
reduced order modeling technique is extended to turbomachinery rotors
with shrouded blades. The tuned blade-shroud ring is modeled as a sin-
gle, cyclic component structure. Thus, the limiting cases of full stick or
full slip at the shroud interfaces may be treated. Mistuning is added by
projecting the mistuned natural frequencies of a single blade onto the
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cyclic modes of the blade-shroud ring. For an example finite element
model, using the case of full stick at the shroud connections, excellent
correlation between finite element and ROM predictions of the free and
forced response is demonstrated.

This paper is organized as follows. The reduced order modeling tech-
nique is presented in Section 2, including updates to the ROM matrices,
and specific formulations pertinent to shrouded assemblies are derived.
A fairly detailed derivation of the proposed method to model mistuned
shrouded assemblies is also included. In Section 3, the technique is ap-
plied to the vibration analysis of a shrouded test case rotor. The results
are validated by comparisons with finite element results. Concluding
remarks are given in Section 4.

2. REDUCED ORDER MODELING TECHNIQUE

2.1 General Formulation of Reduced Order Model
It may be assumed that the disk (d) and blade (b) degrees of freedom

are ordered in such a manner as to give the following partitioning of the
assembled mass and stiffness matrices of the entire structure:

M ] K
—_ Md 0 _ Kd 0 (1)

— 0 Mb 0 Kb J

The location of the disk-to-blade interface can be chosen completely
arbitrarily. In practice, though, this choice may affect the accuracy of
the approximate solutions.

Each sector is here treated as an isolated substructure and since all
sectors are assumed identical, the non-zero matrix blocks will be block-
diagonal:

Md=10Md Mb =I ®Mb
(2)

Kd=IOKd Kb =I ®Kb

where I is an identity matrix, and the symbol 0 denotes the Kronecker
product, which is defined in Appendix A. The `tilde" notation will be
used throughout the following to indicate that a quantity refers to a sin-
gle blade or disk sector. Note that this implies that all degrees of free-
dom associated with the boundaries between adjacent sectors will ap-
pear twice.

A key idea for this reduced order modeling technique (Castanier
et al., 1997) is to describe the motion of the bladed disk assembly using
two particular sets of component modes. Figure 1 depicts the two fun-
damental component mode types for a greatly simplified finite element
model of a bladed disk sector. The first set is comprised of disk-induced
modes, which are the cyclic modes of the entire assembly where the
attached blades are massless. In this case, the blade motion is a rigid-
body motion plus elastic deformation due to the boundary motion. The
blade portion of the disk-induced modes, i.e. the part belonging to the
blade degrees of freedom, will be denoted U d , and the disk portion V d .
The second mode set consists of the modes of a cantilever blade alone,
which is clamped at the chosen disk-blade interface location. Note that
for unshrouded blades, the modal matrix Ub for all N identical blades
is block-diagonal and is assembled as I ®ub , where iib is the cantilever
mode shapes of a single blade. For shrouded blades, however, this set
of modes is also cyclic in nature, due to the presence of direct blade-
to-blade structural coupling, and thus, the cyclic assembly modes will
yield a full matrix Ub .

(a)

'--

Fig. 1 Cantilever blade (a) and disk-induced (b) motions.

Through superposition of these two sets of component modes, and
using the node ordering configuration in Eq. (1), the resulting nodal dis-
placements of the entire assembly can be expanded as:

x= Ud	 1
d a + [ Ub J b (3)

where a and b are modal coordinates for the disk-induced and the can-
tilever blade modes, respectively. With above definitions, the strain and
kinetic energies of the system, as well as the external virtual work done
by a time-harmonic engine order excitation force, Q, may be formulated
in component modal-referred quantities.

Applying Hamilton's principle yields the governing equations of mo-
tion for the reduced order model. They are conveniently written in ma-
trix form as:

Mz+Ca+(1+Gj)ICz=Q	 (4)

where:

Z= { b} C= [0 C] 2=
{QbJ-1UbTQ}

I Id +UdT MbUd UdT MbUb

M _ L UbT MbUd	Ib

Kd 	UdTKbUb
- [

K 	UbTKbUd Kb + AKb

Kd and Kb are diagonal matrices, and the elements on the diagonals
are modal stiffnesses (eigenvalues) obtained from the disk-induced and
cantilever blade finite element analyses, respectively. Id and Ib are the
corresponding modal mass matrices, which in view of the employed
method of eigenvector normalization will be identity matrices. Recall
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that the blade is massless in the disk-induced analysis. Thus, the effect
of blade mass on the disk is included as the second term in the upper-left
quadrant of the mass matrix, but no such term is needed in the stiffness
matrix.

Structural damping with damping coefficient G, as well as viscous
modal damping of the cantilever blade modes, C, have now been added
to the reduced order model, in order to facilitate more realistic modeling
of the structure's dynamic response. In addition, some general measure
of mistuning, OKb, is added into the stiffness matrix K. This measure
of mistuning, although general at this point, implies three assumptions:

• The mistuned characteristics of a blade are restricted to its stiffness
(lower-right quadrant of IC). While stiffness mistuning is sufficient
for the purposes of this study, it may be more accurate to model
mistuning in other structural parameters as well; for instance, by
using the mixed least squares — maximum likelihood method of
Mignolet and Lin (1997).

• The effects of stiffness mistuning on the other three quadrants of
1C are assumed negligible. This is to a large extent justified by
considering the kind of rigid-body-like motion the blade undergoes
in this set of component modes.

• The mistuned cantilever modes of a blade may be realized by a lin-
ear combination of the tuned modes (i.e., they span approximately
the same space).

Note that the resulting structural matrices are all symmetric. In general,
this symmetry is destroyed if aerodynamic coupling between blades is
introduced into the system. However, aerodynamic coupling will not be
considered in this work.

At this point, the reduced order model formulation is completely gen-
eral in that it is applicable to both unshrouded and shrouded assemblies.
However, a closer examination of the various partitions of the struc-
tural matrices reveals significant differences between the two designs,
leading to slightly different degrees of further simplifications. Further
refinement of the formulation for unshrouded assemblies is detailed for
the free response by Castanier et al. (1997), and extended for the forced
response by Kruse and Pierre (1996a), and will therefore not be re-
peated here. A presentation of formulation details for the reduced order
model of a shrouded assembly, including a novel method for modeling
shrouded blade mistuning, will follow.

2.2 Formulation Refinement for Shrouded Designs
A modal matrix containing cyclic modes can be represented as:

Ur = (F'' ®I) Ur (5)

where F is defined in Eq. (B.3), and Ur, which contains the mode
shapes of a fundamental sector in cyclic coordinates, has a pseudo-
block-diagonal structure (see Appendix B):

Ur = Bdiag [uk] (6)

where Bdiag [•] denotes a pseudo-block-diagonal matrix, with the ar-
gument being the kth "block", and the range of k is shown. The mode
type designation r could be either the disk-induced modes, d, or the
cantilever blade modes, b, since the structure of both these modal ma-
trices is cyclic. Combining Eqs. (5) and (6), one may write the internal

structure of a cyclic modal matrix U' as:

r
U =	 fo ®uo fi,^ ®u1 + $,, ®u". ...	 (7)

fk,c ®nk c + fk,a ®uk a	 fN/2 ® UN/2 J

Because of the cyclicity of both U d and Ub and the block-diagonal
structure of M and K, all three projection products in M and 1C will
become pseudo-block-diagonal:

UdT MbUd = Bdiag
k-0,... P

UdT MbUb = Bdiag

UdT KbUb = Bdiag
kc0,...,P

The external excitation force vector shown in Eq. (4), Q, defines the
forcing on all the blade degrees of freedom of the assembly. The re-
striction to blade degrees of freedom is not an absolute requirement, but
leads to a more compact formulation, and it should also be sufficient
from a practical perspective. Moreover, we assume an engine order ex-
citation which is harmonic in time and differs only in phase from blade
to blade. The phase at blade i, Oz, is given by:

27rC(i — 1)

where C is the engine order of the excitation. The external force vector
can then be expressed as:

f&4'2
Q = 	 (10)

fe'0N

where f is the force vector on a single blade.
The expression for the modal force vector Q given in Eq. (4) can be

simplified to a much more convenient form in terms of the disk-induced
and cantilevered blade mode shapes of a single sector, uk and ü, re-
spectively. Using Eq. (10), and the modal matrix as written in Eq. (7),
the corresponding modal force partition becomes:

Qr=UrT Q=
(fo ®uo)T (ec ®f)

($, ®uic + fi,a 0 ui 3
) T (ec ®

	(fk,c 0 u e + fk,a 0 u a) T (ec ®f)	 (11)

(fN/2 ®u/2)T (ec ®f)

where ec is the (C + 1)th column of the complex Fourier matrix, E,
defined in Eq. (B.2). This expression can now be greatly simplified, first
by using the general algebraic properties of the Kronecker product stated
in Eqs. (A.2) and (A.4), and then by making use of the orthogonal prop-
erties of the transformation column vectors involved. The expansion
of Eq. (11) will yield modal force partitions that are zero everywhere,
except for the Cth harmonic disk-induced and cantilever blade modes.

dT 	 dluk fAbukJ

T

uk Mbuk	 (8)

uk
T

Kbuk
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Thus, the engine order excitation, C, determines which modes of the as-
sembly that are being excited. The resulting modal force vector is given
in Section 2.4.

The modal viscous damping matrix for the shrouded cantilever blade
modes, C, will be a diagonal matrix expressed as:

C = Bdiag [dialg {2c]] Kb (12)

where diag [•] denotes a diagonal matrix (block), with the argument
being the nth diagonal element, and the range of n is shown. Also,
t o is the modal damping coefficient of the nth cantilever blade mode
of the kth harmonic. Note that for shrouded blades, Kb is comprised
of diagonal blocks associated with the various cyclic harmonics of the
assembly of shrouded blades.

2.3 Mistuning of Shrouded Blades
Perhaps the most fundamental feature of this technique is its suitabil-

ity for stiffness mistuning of the individual blades, since the modal stiff-
ness of each individual cantilever blade mode is isolated in the diagonal
matrix Kb. Therefore, in the unshrouded case, the formulation lends
itself to a very convenient and simple input of individual mistuning of
each cantilever blade modal stiffness for each blade as:

LKb = Bdiag [diag [oJ J Kb (13)

where Bdiag [•] denotes a block-diagonal (vs. pseudo-block-diagonal)
matrix. The mistuning parameter associated with the kth cantilever
blade mode of the nth blade, bn, is defined as:

l
Sn = (^-k  — 1 (14)wk)

where wn represents the mistuned natural frequency of the kth mode
of blade n, and w k is the corresponding nominal, or tuned, natural fre-
quency.

However, the manner in which the mistuning is put into the ROM
stiffness matrix for unshrouded blades is not particularly well suited
for shrouded assemblies, in that Kb is now represented in cyclic, or
harmonic, modal coordinates. This implies that in order to obtain any
relevant measures of mistuning, one would need to know the effects
of individual blade mistuning on the whole shrouded blade assembly.
In theory, it would be possible to obtain this information through fre-
quency tests of the full blade-shroud assembly, but this approach is not
practical.

In view of this, an alternative approach is to project mistuning mea-
surements for a single blade onto the cyclic modes of the blade assem-
bly. In this case, the test data would consist of the deviations in natural
frequencies of each individual mode of each blade. This data could then
be used to generate estimates of the mistuned stiffness matrices for all
blades, which would then be included in the ROM formulation. In ad-
dition, this would be possible to achieve without very complicated and
specialized testing procedures.

First, one must establish the manner in which the individual shrouded
blade natural frequencies are measured. Here, it is assumed that the
shrouded blades are tested while being clamped at the root, but are oth-
erwise completely unconstrained, as indicated in Fig. 2. Thus, the tests
give measurements of the natural frequencies of a cantilever blade with
free shrouds, wn. Using the mistuning parameter bn defined in Eq. (14),

Fig. 2 Proposed configuration for measuring natural fre-
quencies of shrouded blades individually.

a diagonal matrix containing the measured mistuned natural frequencies
may be defined as:

Bdiag [diag {1 + bn] ] k °`" _ (I ®ub ) TKb t (I® llb)

(15)
where jib is the nominal modal matrix, or the nominal mode shapes, for
one cantilever blade; Kt is a mistuned, block-diagonal stiffness ma-
trix, where each block corresponds to the stiffness matrix of one of the
N mistuned blades; and Kb °m is a diagonal matrix of squared nominal
natural frequencies for a tuned cantilever blade. The nominal natural
frequencies may be taken either as some average values from tests, or
directly from the finite element analysis needed to obtain the tuned can-
tilever blade mode shapes ub . Note that there is already an approxima-
tion made at this point, namely that the eigenvectors ub of the mistuned
blades are the same as the tuned ones (see discussion in Section 2.1).

Returning to Eq. (15), the mistuned frequencies are grouped in blocks
associated with each individual blade, where these blocks are diagonal
in themselves. Moreover, the mistuned stiffness matrix will have the
following block-diagonal configuration:

K t = Bdi	 [Kb n]	 (16)
=1,...,N

Finally, the matrix of nominal modal stiffnesses will also be of a block-
diagonal form, but where all the blocks are identical and diagonal. By

= nom
denoting such a diagonal block K b , the matrix of nominal modal
stiffnesses can be expressed as:

nom
Jo"' = Bdiag [Kb] =10  Kb m 	(17)

nom
Since Kb 	represents the nominal modal stiffnesses for one blade,
Eq. (17) can be rewritten as:

k°"' = i® ubT Kbub = (I ®ub ) T (le Kb) (I ®ub) (18)
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From Eqs. (15) and (18), one obtains:

Kt _	 (19)
1

(I®ub ) T BdiagIdiag
=1,...,N	

[1+bn]] (I®ub'Kb)L k 1 ....,P

by virtue of the Kronecker product property given in Eq. (A.2).
Now, making use of the eigenvector normalization assumption, it is

realized that:

T .. _ 1
I = Bdiag db Mbub

]

 = (I ® lib ) T (I ®1VIb) (I ®ub )
n=1,...,N _

(I®ub)T 
1

 =I®Mbub 	(20)

By substituting Eq. (20) into Eq. (19), and by using the fact that Mb is
symmetric, one may express the mistuned blade stiffness matrix as:

Kbt =I® Kb+	 (21)

+ (I ®Mbub) Bdiag [diag [bn]] (I ®ubTKb)n=1,...,N 	 k=1,...,p

For convenience, the quantity AKb is introduced to denote the stiffness
deviation matrix as:

OKb =	 (22)

(I ®1V4bub) Bdiag ^diag [b'II (i® ubTicb)

such that:
Kb t = I ®Kb + OKb = Kb + OKb	 (23)

2.4 Final Formulation for Shrouded Designs
To conclude this section, the reduced order model structural matrices

(in the absence of aerodynamic coupling) and modal force for shrouded
bladed disks are stated in their final forms:

Id+Bdiag [ukT Mbuk] Bdiag Luk T rVIbuk l
M = 	k=0... •,P	 k=0,•••,P	 J

	bT 	 d}
Bd1agP ilk 1VIbUk	 Ib

0 0
C = kO 

diag...mbN [2] Kb

KdBdiag 
[

u T Kbt1k
JK = 	k=o.••.,P

Bdiag IukT Kbuk
]

 Kb + UbTQKbUb
ke0,..... L

l
OKb = Bdiag Mbubdiag [3n] ub

T
 Kb

]
  k=1,...,p

0

0

{fc,°ec ®u^ J+
T	 dT+ fc.,ec ®uf

0

The expression for the stiffness deviation matrix, OKb, can be simpli-
fied to: . Qb } _

0

0
L)Kb = 

n=1
Bdiag 

N LLMbubdiag [bn ] ubT Kb,	 (24)	,..., 	 k=1,...,p

Finally, the complete blade stiffness matrix for the tuned case, Kb, is
now simply replaced by Kt in the reduced order model formulation.
Thus, replacing Kb by Kt in Eq. (1), and ignoring any contributions
of mistuning from the projection onto the disk-induced modes, as per
discussion in Section 2.1, yield the ROM stiffness matrix for a general
mistuned shrouded bladed disk assembly:

Kd	 BdiagP IukT Kbukl
K = 	 r	 _ _ 1 	L	 J

Bdiag I ubT Kbuk
}

 Kb + UbT AKbUb
kc0,...,P L

OKb = Bdiag [Mbub dia
1
g [bn] ubT Kb] (25)

Thus, the stiffness mistuning OKb, which may be obtained from mea-
suring natural frequencies of individual blades with clamped roots and
unconstrained shrouds, is now projected onto the cyclic modes of the
shrouded blade assembly, Ub . Note that the mistuning projection term
UbT AKbUb does not yield any particular matrix structure, since there
are no special relations, such as orthogonality, between the modes of the
cantilever blade with unconstrained shrouds, and the cyclic modes of the
shrouded blade assembly. Thus, in general, the lower-right quadrant of
the ROM stiffness matrix becomes fully populated when mistuning is
introduced for shrouded bladed disk assemblies.

0

1 {fc,°ec ®u^ cf+

+ fc,sec 0 uc 8f }
0

0

3. ANALYSIS OF A SHROUDED TEST CASE ROTOR

3.1 Finite Element and Reduced Order Models
The finite element model of the test case rotor that is analyzed in this

study is shown in Figs. 3 and 4. The rotor features 24 blades. Each
blade has a base pitch of 30 0 (measured from the axial direction), and
a uniform twist of an additional 30 ° over its length. The base radius is
212 mm, and the blade length is 68 mm. The rotor is fixed at the inter-
faces towards adjacent rotating blade stages. This is believed to provide
a reasonable description of the dynamics of the bladed disk assembly.
Moreover, the studied test case rotor features shrouds, which are arbi-
trarily positioned at 10/13 of the blade length.
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(b)

Fig. 3 (a) Finite element mesh of a single disk-blade-shroud
sector. (b) Finite element mesh of a single blade with
shrouds.

Fig. 4 Finite element mesh of full shrouded test case rotor.

The construction of the reduced order model of a shrouded assembly
requires the following two finite element models:

• A complete sector subject to cyclic constraints at disk-to-disk and
shroud-to-shroud interfaces. This model consists of 488 eight-
noded brick elements and 2,646 degrees of freedom before model
reduction due to applied constraints. The finite element mesh of
this model is shown in Fig. 3a.

• A single cantilever blade. This model consists of 116 linear solid
elements, and 738 degrees of freedom before model reduction.
The finite element mesh of this model is shown in Fig. 3b.

From these fundamental finite element models, the reduced order
model (ROM) is derived using the component mode synthesis technique
described in Section 2. This analysis is based on a reduced order model
that is created from five cantilever blade modes (mb = 5) and five disk-
induced modes (md = 5) per harmonic, leading to a total of 240 degrees
of freedom.

In addition, five cantilever blade modes with unconstrained shrouds
were used to generate the stiffness deviation matrix, AKb (p = 5).
This, however, does not influence the size of the resulting reduced order
model. It should be pointed out that, if the cantilever blade mode shapes
from the cyclic symmetry analysis conform relatively closely with the
cantilever blade mode shapes with unconstrained shrouds, very little im-
provement in accuracy is gained by including more than mb modes for
the stiffness deviation generation. In this case, the principal effects of
the stiffness deviations are already captured by the mb modes. However,
using fewer than mb modes yields poor accuracy and thus, in general,
the condition p > mb should always be satisfied in order to obtain a
reduced order model with reasonable accuracy.

Finally, a finite element model of the full mistuned rotor was created
to allow comparisons of mistuned mode shapes and forced responses for
a single, random mistuning pattern. The mistuning pattern was sampled
from a uniform distribution of mean zero and standard deviation 5%.
Individual mode mistuning is not employed in this analysis. Therefore,
the mistuning is readily introduced to the full finite element model by
appropriately varying Young's modulus in the blade elements as:

E,, = ( 1 + bn) Eo n = 1, ... , N (26)

The material properties for the finite element model were taken to be
those of steel. The full finite element model consists of 11, 712 linear
solid elements and 56,376 degrees of freedom, and its finite element
mesh is shown in Fig. 4.

It should be noted that the shroud-to-shroud connection is modeled as
being continuous (full stick). Since no effort has been made to include
friction at the shroud mating surfaces, the present modeling technique
can be used for the limiting cases of full stick or full slip conditions. The
incorporation of shroud interface models (Srinivasan et al., 1978; Menq
et al.,1986; Valero and Bendiksen, 1986) into this type of reduced order
model will be the subject of future work.

3.2 Free Vibration
Figure 5 displays the tuned natural frequencies versus the num-

ber of nodal diameters for the test case rotor in the lower frequency
range, as obtained from finite element analysis and ROM analysis.
MSGNASTRANTM was used to calculate the natural frequencies and
mode shapes of the finite element models, and to extract the blade mass
and stiffness matrices (Mb and Kb).
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Fig. 5 Comparison of tuned eigenfrequencies from finite el-
ement model (FEM) and reduced order model (ROM) with and
without eigenvalue adjustment iterations.

Fig. 6 Comparison of the 80 lowest mistuned eigenfre-
quencies from finite element model (FEM) and reduced order
model (ROM) with and without eigenvalue adjustment itera-
tions.

4	 O	 tl 	 10 	 12 	 14 	 15 	 15 	 20 	 22
Blade Number

Fig. 7 Mistuned mode number 17 at 2861.7 Hz, as obtained
by finite element model (FEM) and reduced order model
(ROM) with and without eigenvalue adjustment iterations.
This mode exhibits significant localization.

Clearly, as the number of nodal diameters increases, the disk becomes
much more stiff. Thus, the slanted lines to the left in Fig. 5 correspond
to disk-dominated modes. The lines which are approximately horizontal
represent families of blade-dominated modes. The characteristic types
of blade motion for the blade-dominated mode families are indicated in
the plot. One can observe that, depending on the mode family, a slight
stiffening or a slight softening occurs as the number of nodal diameters
increase for the blade-dominated modes. This is somewhat different
from the unshrouded case, where the frequencies associated with a cer-
tain family of blade-dominated modes are nearly constant over a certain
range of nodal diameters.

Figure 5 also depicts the increase in ROM accuracy via eigenvalue
adjustment. By directly adjusting the eigenvalues, or modal stiffnesses,
associated with the blade modes (i.e., the diagonal elements of Kb ), the
ROM's representation of the blade-dominated modes is enhanced.

The adjustment procedure is a simple iterative process, where the
cantilever blade eigenvalues are re-scaled based on the ratio between
the tuned finite element eigenvalues from a cyclic symmetry analysis
of a complete sector and the corresponding ROM eigenvalues. Once a
sufficiently small residual is achieved, one may move on and introduce
mistuning. As seen in Fig. 5, after three iterations of eigenvalue ad-
justments, the blade-mode frequencies for the ROM are nearly identical
to those of the FEM. Naturally, the adjustments of the cantilever blade
mode eigenvalues have a much smaller effect on the disk-dominated
modes.

Figure 6 illustrates the correlation between finite element and ROM
natural frequencies for the mistuned rotor. Since the nodal diameter de-
scription of the modes fails for certain mistuned modes due to localiza-
tion, the natural frequencies are instead plotted versus the mode number
in the mistuned case. Again, the results obtained from the reduced order
model after eigenvalue adjustments compare very well with the finite
element results.

2nd
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Fig. 8 Tuned forced response for engine order 7 excitation,
as obtained by finite element model (FEM) and reduced order
model (ROM) with and without eigenvalue adjustment itera-
tions.

Figure 7 illustrates the correlation between finite element and ROM
mistuned mode shapes. The Euclidean norm displacement measure, fi;,
for each blade i, is defined as:

N (u? - , , )_ r ( (27)
u bl E —1 \u 7,* + u?.,e +

where utj,x is the displacement component in the x-direction, N is the
number of nodes in one blade, and Nb is the total number of blades. The
Euclidean norm is a scalar value, which may be interpreted as a measure
of relative blade energy content.

Specifically, Fig. 7 shows the 17th mistuned mode at 2862 Hz, in
which the vibration energy is largely confined to blades 17 and 19. The
dramatic mode localization exhibited by this mode is due to the high
modal density in this particular frequency region (Pierre, 1988). In fact,
it is virtually impossible to find any traces of the corresponding smooth
harmonic tuned shape from which it derives.

Note the excellent agreement between the FEM and the ROM mode
shapes, especially after eigenvalue adjustment. Several important fac-
tors are extremely well captured, such as peak amplitude, position of
localization, and rate of spatial decay away from the localized area.

3.3 Forced Response
Next, we consider the forced response of the blink. The external exci-

tation force consists of a unit nodal load applied on the tip of the blade's
leading edge in the axial direction. This applied force was chosen ar-
bitrarily, and it serves only to verify the accuracy of the reduced order
model. Furthermore, the structure is excited according to engine order
7 excitation, which has a blade-to-blade forcing phase shift of 105°.

The tuned rotor's response to this external forcing is shown in Fig. 8.
After only two iterations of eigenvalue adjustments, the FEM and ROM
predictions of the tuned rotor's response are nearly identical. The dif-

Fig. 9 Forced response for engine order 7 excitation, for
both tuned and mistuned rotor, as obtained by finite ele-
ment model (FEM) and reduced order model (ROM) with three
eigenvalue adjustment iterations. The mistuned FEM has
56,376 degrees of freedom, while the ROM has only 240 de-
grees of freedom.

ference between the resonant frequencies of the FEM and the ROM is
reduced from 2.3% to 0.0007% after these two iterations. Also, the er-
ror in peak response amplitude decreases from —3.9% to 0.9%. This
amplitude error did not improve during subsequent iterations.

Figure 9 shows the response of the mistuned rotor for the same source
of excitation. The mistuning and localization effects lead to a substantial
increase in.peak response amplitude and, in addition, a very significant
widening of the resonant frequency bandwidth, compared to the cor-
responding response of a tuned rotor. In absolute normed displacement
values, the maximum resonance amplitude predicted by the ROM is less
than 0.2% lower than that predicted by the FEM (0.649 versus 0.650),
which is an acceptable discrepancy, considering the huge difference in
model sizes.

A notable effect of the order reduction is that the reduced order model
here predicts a somewhat wider band of resonant frequencies, compared
to the finite element analysis, due to residual errors in the ROM mis-
tuned eigenfrequencies. The ROM mistuned eigenfrequency of the 12th
mode is 0.16% lower than the corresponding FEM frequency, while the
approximation of the 17th mode eigenfrequency is 0.04% higher. The
conformity of the response characteristics predicted by the reduced or-
der model is otherwise reasonably accurate.

4. CONCLUSIONS
This paper demonstrates how the vibratory behavior of a mistuned

bladed disk of a general design may be analyzed by a systematic and
computationally efficient reduced order modeling technique, based on
a component mode approach. In particular, this work showed how the
technique could be extended to designs with shrouded blades, and how a
convenient measure of individual blade mistuning may be incorporated
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into the analysis with relative ease. Stiffness mistuning was included by
projecting the mistuned natural frequencies of individual blades (with
clamped roots and free shrouds) onto the cyclic modes of the shrouded
blade assembly.

The reduced order modeling technique and the proposed method of
mistuning for shrouded blade assemblies were validated using a finite
element model (FEM) of a test case rotor. The total number of degrees of
freedom for this FEM was 56,376, compared to only 240 for the reduced
order model (ROM). The free and forced response results obtained for
the ROM were in excellent agreement with those of the much larger
FEM. Of special importance was the agreement of the forced response
amplitudes for a rotor with mistuned blades. These results show that
this reduced order modeling technique may provide a valuable tool for
predicting the statistics of forced response for mistuned bladed disks.
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APPENDIX A: THE KRONECKER PRODUCT
The Kronecker product of two matrices is defined as:

a11B a12B ... a1NB
a21B a22B ... a2NB

A ®B=	 1	 (A.1)

aN1B aN2B ... aNNB

Selected useful properties of the Kronecker product:

(A ® B) (C ® D) = (AC) ® (BD)	 (A.2)

	

(A® B) -1 = A -1 ® B -1 	(A.3)

(A ® B)T = AT ® BT 	(A.4)

APPENDIX B: CIRCULANT MATRICES / CYCLIC SYMMETRY
The reduced order model formulation outlined in this paper makes

frequent use of the properties of circulant matrices and their eigenvec-
tors, as applied to cyclic symmetry problems. The properties of circulant
matrices are thoroughly examined in Davis (1979). Moreover, a detailed
description of modes of vibration for cyclic structures is contained in the
important work by Thomas (1979), although certain related mathemat-
ical aspects, such as the fundamentals of circulant matrices, appear to
have been unrealized at the time.

The general form of a square circulant matrix is:

Cl	 C2 ...	 CN

CN C1 • .. CN-1
C = circ (01,02,... ,ON) _	 (B.1)

C2	 C3	 ...	 C1

All circulant matrices of order N possess N independent eigenvectors.
In particular, they share the same set of eigenvectors that make up the
complex Fourier matrix, E:

E _ [eke] ; eki = 	 &a(=-1)(k-1) 	 k, i = 1, ... , N (B.2)

where j =	 and a = 2a/N. In addition, there exists an "almost-
equivalent" real-valued form of Eq. (B.2):

F = [ fo fi,. fl,, ... fn . fns	 fN/z I _
1

V cosc

0

sincr

1

-
cos 2a sin 2a

[ * Vcos(N - 1)a sin(N -1)a
(_l)1

where the last column only exists if N is even.
Note that both E and F are orthonormal, or unitary, such that

WE = FTF = I, where I is an identity matrix of size N, and *
denotes the Hermitian adjoint (complex conjugate transpose). In addi-
tion, this implies that E-1 = E" and F-1 = FT , such that the typical
transformation products E"CE and FTCF are similarity transforma-
tions (Strang, 1988).

The reason behind calling F "almost-equivalent" to E is that the
columns of F are not true eigenvectors of C, and hence, the similarity
transformation FTCF will not yield a diagonalized matrix. However,
it will result in a matrix where all non-zero elements will be grouped
into 2 x 2 blocks ("double" harmonics) on the diagonal, except for the
(1, 1) and, for N even, the (N, N) elements ("single" harmonics). This
matrix type is referred to as pseudo-block-diagonal.

These properties are readily extended to the case of block-circulant
matrices by expanding E and F as E ® I and F ® I, respectively. The
scalar c; then represents a matrix block Ci, where C; and I are of the
same size. The symbol ® denotes the Kronecker product, which is de-
fined in Appendix A.

From the theory of symmetrical components, one may relate some
quantity x, (i.e., displacements, forces, etc.) in physical coordinates for
the nth sector to the corresponding quantity uk in cyclic coordinates for
a fundamental sector by:

x= (F ®I) u (B.4)

where:
U0

X1 UIC

X2 uls

x= X3 u= uzo (B.5)

XN uN/2

I has the size of the number of elements in uk , and F is defined in
Eq. (B.3). In the context of this work, the quantities x and u represent
nodal displacements in physical and cyclic coordinates, respectively.

A structure that exhibits cyclic symmetry will have structural ma-
trices (mass and stiffness) that may be represented in block-circulant
form. Thus, in structural analyses of cyclic structures, the pseudo-block-
diagonalization achieved via the coordinate transformation in Eq. (B.4)
leads to significant problem size reduction and hence, substantial im-
provement in computational efficiency. Note that a similar degree of
problem size reduction may be obtained using a complex approach, by
employing the Fourier matrix, E, defined in Eq. (B.2).
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