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ABSTRACT
This paper investigates the nonsynchronous motion of a rigid

rotor in squeeze film damped systems without spring support
subjected to both unbalance and unidirectional loading. Both
harmonic balance and 4th order Runge-Kutta integration are
used to obtain the unbalance response, the asymptotic stability
of the harmonic balance equilibrium solutions being
determined by Floquet theory. Depending on the system
parameters stable subharmonic orbits with fundamental
frequencies of half, one third and one quarter of excitation
frequency were obtained. Also, bistable, tristable and
quadristable solution possibilities were found. The effect of
these subharmonic orbits on maximum transmissibilities is
included.

NOTATION

Ao,A 3 ,AZ,A Z Fourier coefficientskk
z

Bk , Bk	Fourier coefficients

C	 radial clearance

Co , Ck , Co , Ck	 Fourier coefficients

e,e	 journal eccentricity, e = e/C

fy ,fz 	damper forces in y and z directions;

Fy = fy / (mCQ 2 ) etc.

h	 film thickness; h = h / C
k	 order of Fourier series component; k = 1, ....n
L	 land width of the bearing
m	 rotor mass per bearing station

n	 highest order of truncated Fourier series
N	 order of lowest significant subharmonic

p,q	 Y ^Z I

P	 lubricant pressure
R	 bearing radius

Sk ,S 	 Fourier coefficients

t,i	 time; Z = Qt
T	 maximum transmissibility over period of

equilibrium solution
U	 unbalance parameter = p/C
W	 unidirectional load parameter = g/(CQ 2)
Z	 axial coordinate measured from bearing centre Ob

in x direction as shown in Fig. 3; Z = Z/ L
x, y, z	 coordinates located in centre plane of bearing at Ob

as shown in Fig. 3; y = y / C, z = z / C

y	 a speed or frequency parameter; y = w/Q
X	 ky/N
µ	 mean absolute viscosity of lubricant
p	 mass eccentricity

't,	 angular location from y direction of A along

bearing surface as shown in Fig. 3.
V*	 defined by eqn. (8)
Q	 angular velocity for non-dimensionalisation

=L3 µR/(mC3 )
cu	 angular velocity of rotor

denotes differentiation with respect to time t,i
Subsubscript E denotes equilibrium value.
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subharmonic solutions are possible is a consequence of the

non—linearity of the system (Iwata and Kobori, 1981).
Though Li and Taylor (1987) and Zhao and McLean (1990)

both assumed the presence of support springs, their results
suggest that dampers without such springs could also
experience subsynchronous solutions.	 Since harmonic
balance enables stable equilibrium orbits for such unsupported
dampers to be determined rapidly, regardless of the operating
conditions, as distinct from the transient solution approach
which is unsuited for such determinations under conditions of
low damping, it is now opportune to investigate the operating
conditions conducive to the existence of subharmonic
solutions in unsupported dampers.
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FIGURE 1. SCHEMATIC OF SQUEEZE FILM DAMPER

INTRODUCTION
Because of their constructional simplicity and wide range of

damping capability, circular bore type squeeze film dampers
have found frequent application in aeroengines, wherein the

outer race of roller bearings forms the non—rotating journal
surface of the damper. Depending on engine design, such
dampers are generally either centrally preloaded (whereupon
the gravitational load is balanced by retainer springs), or the
centralizing springs are dispensed with altogether as in Fig. 1,
relying on unbalance excitation for lift off. The former design
is generally assumed to result in circular synchronous orbiting
of the journal centre about the bearing centre and generalised
techniques for determining all such equilibrium orbit solutions
are available (Greenhill and Nelson, 1982; McLean and Hahn,
1983), which solutions need to be tested for asymptotic
stability (McLean and Hahn, 1985). The unsupported damper
design does not allow for such a simplifying assumption and
has generally necessitated transient solutions (Mohan and
Hahn, 1974) to obtain the steady state journal orbit, though
recently, harmonic balance has been successfully applied to
obtain stable equilibrium solutions for unsupported rigid
rotors (Chen and Hahn, 1991; Wang and Hahn, 1991).
The possibility of stable nonsynchronous solutions for

centrally preloaded dampers was conclusively demonstrated
by Li and Taylor (1987) who found stable subsynchronous

solution possibilities for rigid rotor systems with insufficient

spring preload to centre the gravitational load. 	 Such

possibilities were confirmed by Zhao and McLean (1990) who
used trigonometric collocation to evaluate the coefficients of

the assumed periodic equilibrium solution. 	 That such

IIgj r=7 ^ r=7
FIGURE 2. SYMMETRIC RIGID ROTOR WITH

DAMPERS AT EACH END

THEORY
The relevant theory will be developed for a symmetric rigid

rotor with an unsupported damper at either end as shown in
Fig. 2. A section view through the centre of either dampers is
given in Fig. 3.
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FIGURE 3. SECTION VIEW OF SQUEEZE FILM
DAMPER SHOWING NOTATION
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depend on the three non—dimensional parameters U, W and y,
so selected that only y is speed dependent.

Assuming equivalent dampers at either end of the rotor and
cylindrical rotor motions, the equations of motion at either
damper station may be written as:

my = mpco 2 cos wt +fy 	(1)

mz=mpw 2 sin wt+fz —mg 	 (2)

or in non—dimensional form:

y" =Uy 2 cosyz+Fy	(3)

z =Uy 2 sinyt+FF — W .	 (4)
The damper force components may be obtained by

integrating the pressure distribution. Assuming that the
Reynolds equation with constant fluid properties is applicable
and that the short bearing approximation is valid, the pressure
distribution in the damper is given by Chen and Hahn (1991):

P=6L2	 _(
4—Z2 J zsinw+ycosl	 (5)

h

	

where	 h = C — zsinw — y cos,	 (6)
and where the pressure at both ends of the bearing is assumed
to be zero. Hence, one obtains:

^
Fy j __ 	 2n

R' 2 J J P d Z 
cos

 dip 	 (7)

	

Fz 	mC(o o _ 2̂ 	sinyt

By setting all pressures below zero equal to zero, the
integration of Eqn. (7) is considerably simplified, for the
positive pressure region extends over an angular extent of
exactly n. Thus, the p limits of integration in Eqn. (7) need
only extend from V* to w*+rt where:

tanV * _ —y/ z	 (8)

with the value of w* uniquely defined by the requirement that

y sin, + zcos^r be positive for V* < y) < i4t * +n. This

cavitation condition was assumed in order to hasten
computations. Insistence on zero pressure gradient normal to
the cavitation boundary would considerably lengthen the
computation with only a minor increase in accuracy and hence
was not felt warranted. Eqn. (7) can then be integrated in the
Z direction to give

	

{F1 	J " a sinw+y cos* cosy d^V (
9)

	

Fz^	 ,y • (1-zsinw-ycos^) 3 . sinyt}
Obviously, Fy and Fz are functions of the displacement and

the velocity. Note that the solution of Eqns. (3) and (4)

COMPUTATIONAL STRATEGY
Both transient and harmonic balance solution approaches

were used to obtain the stable equilibrium solutions, the
former serving mainly to seek out solution possibilities when
no apparent stable equilibrium solutions could be located
using harmonic balance. The harmonic balance approach,
which is summarised in the appendix, assumes an equilibrium
solution in the form of a Fourier series, so that the problem
resolves into evaluating the unknown series coefficients from
a set of as many nonlinear simultaneous equations as there are
coefficients. The equilibrium solution so obtained then needs
to be tested for asymptotic stability.

Both approaches have shortcomings. The transient solution
approach, here 4th order Runge Kutta integration was used,
becomes computationally too time consuming under
conditions of low damping. The determination of whether a
stable equilibrium solution has been reached, if there is one,
can be rather tricky. Solutions can be initial value dependent,
and there is no guarantee that all stable equilibrium solutions
have been found.
The harmonic balance approach, on the other hand, is much

faster, regardless of whether the system is lightly damped or
not. However, it necessitates the simultaneous solution of a
set of nonlinear equations, so that the solutions are both
iterative technique and initial guess dependent. Again, one
does not generally have the certainty that all possible
equilibrium solutions have been found. A sufficient number
of terms must be retained to ensure that the assumed Fourier
series is convergent, and all relevant solution harmonics must
be present in the initial guess. All equilibrium solutions
needed to be tested for asymptotic stability.

By and large, the harmonic balance approach was used for
the parameter range investigations, with the transient
approach occasionally used to validate what appeared to be
unexpected stable equilibrium solutions, as well as to seek out
different stable equilibrium solution possibilities, and to study
unstable equilibrium solution behaviour.
Once equilibrium orbits had been found, the maximum

transmissibility during the fundamental period was calculated
according to:

y:
T - Maximum value of ( Fy 2 +F 2 )2 ) /(U 2 ) (10)

RESULTS
Equilibrium solutions were sought over the parameter range

0.1 < U < 0.5, 0 < W < 1000 and y > 0. Only a few results are
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FIGURE 4. PLOT OF T VERSUS y FOR
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FIGURE 5. PLOT OF T VERSUS y FOR
U=0.35 AND W=100
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U=0.2 AND W=1000
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FIGURE 7. PLOT OF T VERSUS y FOR
U=0.2 AND W=100

presented here to illustrate the complexity and diversity of the
solution possibilities. Figures 4 to 7 give results for
T versus y for U = 0.35 and U = 0.2 each for values of
W = 1000 and W = 100. Full lines indicate stable equilibrium
solutions.

Note that depending on the operating conditions, it was
possible to find one or more stable equilibrium solutions, or

only an unstable equilibrium solution. Thus, three stable
equilibrium solutions are indicated for W = 100, U = 0.35 and
48 < y < 50. Indeed, for the parameter combination of
W = 50, U = 0.375 and y = 40, four stable equilibrium
solutions were found and the steady state orbits for these four
solutions are shown in Fig. 8. The occurrence of so many
stable solutions was rare.
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FIGURE 8. STABLE EQUILIBRIUM ORBIT FOR
U=0.375, W=50 AND y = 40
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On the other hand, many parameter combinations were found
for which no stable equilibrium solutions are indicated. Thus,
in Fig. 6, for W = 1000 and U = 0.2, no stable solutions were
found for 159 < y < 300. For y = 250, Fig. 9 shows the last 10
cycles after 110 solution cycles. A plot of

z versus z and y versus y, as suggested by Li and Taylor

(1987) would indicate whether a high order subharmonic
fundamental exists. Even after 50 cycles (after an initial 200
cycles) no subharmonic fundamental could be located.
Generally, harmonic balance investigations did not seek
equilibrium solution possibilities below fourth order
subharmonics, owing to the rapid increase in the number of
Fourier coefficients required for accuracy as the order of the
subharmonic increases.

10
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Y

FIGURE 9. UNSTABLE EQUILIBRIUM ORBIT
FOR U=0.2, W=1000 AND y = 250

Some trends are apparent even from the limited data
presented. Thus, as the unbalance increases, the possibility of
undesirable multistable operation is increased. Referring to
Fig. 7, for W = 100, and U = 0.2, the damper operates with
low T over the speed range 75 < y < 435. Once y exceeds
435, a huge increase in T is possible. Subsynchronous
vibration, or unstable behaviour occurs only for y less than 75,
at which relatively low speeds, high transmissibilities are not
all that relevant as the dynamic forces themselves are low. As
the unbalance increases, this desirable operation regime is
progressively reduced and as seen in Fig. 5, is non—existent
when U = 0.35, by which time, high T is possible over the
whole operating speed range. As may be seen from Figs. 4
and 6, similar predictions pertain to W = 1000, except in this
case, the speed range over which no stable solutions were
found has increased considerably. Such unstable regions are
more likely at lower unbalance values, for as unbalance
increases, the high T stable synchronous solution occurs at

lower y values and stabilises the situation, so to speak. Thus,
for U = 0.2, the range for unstable only solutions has shrunk
from 159 < y < 300 to 48 < y < 75 as W decreases from 1000
to 100.

5-

4
U= 0 35

Stobte caution
w_t0	—___ Unstable sotut,on

3
W=6

2 -

 Second order subhormonic

1 -
W=0 	 _	 ^, 'N. 	,Svnchronos

0
6 8 10 12 14 16 18 20 22 24 26 28 30

7

FIGURE 10. PLOT OF T VERSUS y FOR
U=0.35 AND 0<W<10

Subharmonic solutions tend to be restricted to relatively low
y values, depending on W and U. Though no subharmonic
solutions are indicated for W = 1000 and U = 0.35 (Fig. 4)
some have been found for W = 1000 and U = 0.2 (Fig. 5) and
an upper bound to W at which no subharmonic solutions exist
regardless of U has not yet been found. However, as W
decreases, for some given 	 U, the speed range for

subharmonic possibilities tends to decrease and, as may be

seen in Fig. 10, disappears at W = 0. Nor were subharmonic
solutions found at W = 0 for other U values either. This
agrees with the observations of Li and Taylor (1987), for
spring supported dampers. In such cases, all orbits were
circular. Hence, it may be concluded that a resultant
unidirectional loads is necessary to produce subharmonic
orbits.

SUMMARY OF CONCLUSIONS
1. Neither the transient nor the harmonic balance approach

can guarantee that all possible stable equilibrium solutions
have been found. Both approaches were occasionally
needed to seek out stable equilibrium solutions.

2.A resultant unidirectional load appears necessary for

subharmonic equilibrium solutions. With such a load,
depending on operating conditions, significant second, third
or fourth order subharmonic components were found.

3. Depending on operating conditions, no stable equilibrium
solution or as many as four stable equilibrium solutions
could be found.
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4. The possibililty of undesirable multistable operation, with
high maximum transmissibility increases with increased
unbalance parameter.

5. Subsynchronous vibrations tend to occur at relatively low
values of the speed parameter, and even though they
involve high maximum transmissibilities, the dynamic
forces are expected to be low.

6. Unstable regions, ie regions for which no stable equilibrium
solutions have been found, tend to be favoured by high
unidirectional loading and low unbalance loading.
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APPENDIX

The Harmonic Balance Approach

Equilibrium Solutions . If steady state conditions have
been reached, one can assume solutions to eqns. (3) and (4) of
the form:

YE = A o +	 k cos Xkt +Bk sin k'C) 	 (Al)
k=1

zE = A o + k ^Ak cos k i + Bk sin X kt) 	 (A2)
k=1

where	 a.k = ky / N	 (A3)

and where it is assumed that there are n harmonics of the
fundamental frequency w/N; i.e. an integer value of N allows
for the possibility of an N'th order subharmonic of the
excitation frequency w. Eqns. (3) and (4) then become:

y E = Uy 2 COS is + Fyr 	(A4)

zE =Uy 2 sinys+FZE —W . (A5)

Since Fy E and FZE are functions of YE ,YE  , Z E and z E ,

they themselves must be periodic with the same frequency

components as the YE and z E , i.e.:

F 	 Co + = (Ck cos Xkt+Sk sin kz)	 (A6)
k=1

and FZE = Co + k̂ t (Ck cos Xk i +Sk sin xki) 	(A7)

where by definition,

Ck =  j FyE cos (Xkt)dt=Ck(y E ,Y E ,Z E ,Z E )etc.
0

(A8)

Satisfaction of eqns. (A4) and (A5) at all equilibrium solution
times requires that for all k:
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0- Co	 (A9)

-XkAk =Ck +PUy 2 	(A10)

-)k Bkk Sk 	 (All)

0 = Co - W	 (Al2)

—?4 Ak = Ck	 (A13)

_?4 Bk =Sk +13Uy 2 	(A14)

where = 1 when k = N, and S = 0 otherwise.
Thus, the equation set (A9) to (A14) constitutes a set of

(4n + 2) non—linear simultaneous equations in the (4n + 2)

unknowns Ao,....An,Bi .....BY,Ao,....An,Bi .....Bn

Stability of Equilibrium Solutions:
Consider small motion perturbations to the equilibrium

solutions YE and ZE , so that eqns. (3) and (4) are relevant.

Subtracting eqns. (A4) and (A5) respectively yields:

y" -yE = ey „ = Fy -Fy6

OF - OF _ aFy _ OFy
= ey+—ez+—ey" +—oz ' (A15)

ay 	 az 	 ay"	 Oz'

z -zE=ez"-FZ -FZE

= OF y+ aFZ ez+ aFZ ey' aF+ Z ea (A16)
ay 	 az	 ay 	 Oz

For asymptotic stability, Ay and Ax must approach zero with

time. Since eqns. (A15) and (A16) constitute a set of linear
differential equations with periodic coefficients of period
2stN/y, Floquet theory (Coddington and Levinson, 1955) may be
conveniently used to test for stability. Thus, letting

p = y and q = z , eqns. (A15) and (A16) may be written as:

0	 0	 1	 0

ey '	o	 0	 0	 I	 ey	 0

eZ 	 aFy aFy aFy aFy ez	 o

ep '	 ay az Op aq Ap = 0	 (A17)
e 	a5 aFZ aFZ aFZ eq 	 0

q 	ay a2 Op aq

Let G be the 4 x 4 matrix whose columns contain the four
solutions at time t = 2nN/y of the above equations, having as
initial conditions the corresponding column of the 4 x 4
identity matrix. Then the system is stable if all the

eigenvalues of G have magnitudes less than unity. These
four solutions may be obtained by any technique whatsoever,
eg 4th order Runge Kutta with variable step size was used in
this work.
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