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ABSTRACT

The determination of critical speeds and modes and the
unbalance response of rotor-bearing systems is investigated with
the application of a technique called the generalized polynomial
expansion method (GPEM). This method can be applied to
both linear and nonlinear rotor systems, however, only linear
systems are addressed in this paper. Three examples including
single spool and dual rotor systems are used to demonstrate
the efficiency and the accuracy of this method. The results in-
dicate a very good agreement between the present method and
the finite element method (FEM). In addition, computing time
will be saved using this method in comparison with the finite
element method.

NOMENCLATURE

a, (t), b, (t) 	 : Generalized coordinates

A(x) :	 Cross sectional area of the shaft.

cy y^,czz^,c b : 	 Damping coefficients of the j-th bearing

d Diameter of the shaft.

ed Eccentricity of the i-th disc.

e(x) Eccentricity of the shaft at position x.

E(x) :	 Elastic modulus of the shaft.

1(x) Cross sectional area moment.

ID, IP Diametral and polar mass moment of

inertia of the shaft.

ID S , IP : Diametral and polar mass moment of

inertia of the i-th disc.

k53-, ky51 :	 Elastic constant of the j-th bearing.

Total length of the shaft.

and Mass of the i-th disc.

Nd : 	 Total number of the disc.

Nb Total number of the bearings.

Np Total number of polynomials.

Q f , Q b : Magnitude of steady state forward and

backward response.

V d, W, Translational displacements of the i-th

disc.

V h, W 6 : 	 Translational displacements of the j-th

bearing.

ca r Real part of eigenvalues.

6. Log decrements.

A : 	 Whirl ratio (12/w).

p(x) : 	 Density of the shaft, mass/unit length.

S2 Rotating speed of the shaft.

Whirl speed.

INTRODUCTION

Various methods for the determination of critcal speeds
and modes and the unbalance response of rotor-bearing sys-
tems have been developed and widely used during the past
few decades. These methods may be categorized in two ma-
jor classes. The first is the discretization method which ap-
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proximates a rotor system using a finite number of degrees-
of-freedom. In this case, the equations of motions are a set
of ordinary differential equations. This category can also be
divided into two techniques. One is the state vector-transfer
matrix method (Myklestad, 1944; Prohl, 1945; Lund, 1967,
1974a, 1974b). The other is the direct stiffness method (Ruhl
and Booker, 1972; Dimaragonas, 1975; Gasch, 1976; Nelson
and McVaugh, 1976; Childs, 1978; Nelson, 1980; Adams, 1980;
Childs and Graviss, 1982). These techniques have been suc-
cessfully utilized to analyze the dynamic characteristics of ro-
tor systems. The second is the analytical method (Gladwell
and Bishop, 1959; Dimentberg, 1961; Eshleman and Eubanks,
1969; Lee and Jei, 1988) which treats the rotor systems as
distributed parameter system with a set of partial differential
equations describing the system motion.

At the present time, the state vector-transfer matrix meth-
od is limited to linear frequency domain analysis and the di-
rect stiffness method may be the only validated tool available
for both linear and nonlinear time domain analysis. However,
the use of the direct stiffness method may lead to high com-
putation time and costs for large rotor systems. Kumar and
Sankar (1986) proposed a new transfer matrix method for re-
sponse analysis of large dynamic systems. Cu (1986) intro-
duced an improved transfer matrix-direct integration method
to determine the critical speeds and unbalance response. A
method which combines the methodologies of finite elements
and transfer matrix, has been applied (Subbiah et al., 1988)
for the transient dynamic analysis of rotors. In addition, Cran-
dall and Yeh (1986, 1989) proposed a modelling approach for
the multi-rotor system. It generates the internal modes of each
rotor component without solving the eigenvalue problems. And
each mode of the rotating shaft is represented by fourth order
polynomials with piecewise constant coefficients. It is noted
that for the finite element method (FEM) the deformation of
a rotating shaft using a typical beam element is described by
third order polynomials with piecewise constant coefficients.
Also, these coefficients are expressed as functions of the deflec-
tions at node points.

In this paper, the analysis method introduced by Shiau
and Hwang (1989), has been modified and is called the gen-
eralized polynomial expansion method (GPEM). The method
approximates the displacements of an entire rotating shaft in
the global assumed modes sense with (Nr,-1)-th order polyno-
inials with time dependent coefficients. This is different from
the finite element method in a subdomain sense and from the
modelling approach proposed by Crandall and Yeh (1986,1989).
The present approach can be applied to both linear and non-
linear rotor-bearing systems. The application of the GPEM
to nonlinear systems has been investigated and submitted for
publication [Hwang and Shiau (1989)1. The efficiency and the
accuracy of using this method will be demonstrated through
examples. The critical speeds, mode shapes, and unbalance
response of the examples are shown in this study.

EQUATIONS FORMULATION

The basic configuration of a rotor-bearing system usually
consists of the components: rigid discs, flexible shafts, and
bearings, such as shown in Figure 1. The lateral displacements
and the rotor eccentricity due to mass unbalance are assumed to
be small. To describe the system motion, two reference frames
are utilized. One is a fixed reference X-Y-Z and the other is a
rotating reference x-y-z. The X and x axes are collinear and
coincident with the undeformed bearing centerline. The two
reference frames have a single rotation wt difference about X
with w denoting a whirl speed.

It is assumed that all the deflections and forces are parallel
to the Y-Z plane. The deflection of a cross-section of shaft
consists of two translations (V,W) and two rotations (B,r). It
is assumed that the deflections can be expressed as functions
of position along the rotating axis x and time t, i.e.

V =V(x,t) , W =W(x,t)

B = B(x, t) , T = T (x, t) 	 (1)

The rotations(B,F) are related to the translations (V,W) by
the equations

B(x t) _ 
8W (x, t)

'	
ax

F(x t) _ aV (x.t) 	(2)
ax

To derive the equations of motion, the Lagrangian approach
is employed. This requires the calculation of the kinetic and
potential energies of the system. The kinetic and potential
energies of the system can be expressed in terms of the dis-
placements and their derivatives. The total kinetic energy (T)
and the potential energy (U) of the system can be expressed as

T = T9 + Td + Te	(3)

U=U9 +Ub 	 (4)

where T9 and Td are the kinetic energy of the shaft and the
disc; Te is the kinetic energy related to the eccentricity; U8 and
Il i, are the strain energy of the shaft and bearings. They are of
the forms:

T, = 1 f pA(V2 +W 2 )dx+  J ID(B 2 +T 2 )dx
2 0	2 o

+ 1 n I Ip(FB—BT)dx+ 1 SZ 2 J e Ipdx	 (5)
2 	 o 	2	 o

Td = { 1md(Vi2 +Wi2 )

+ 2 IDi (B? + F) + 2 SZIpi (BT — TB)

+ 21t2Ipi} 	 (6)

Te = J e e(x)p(x)A(x)[-4 	 + 0) + W cos(ilt + (k)]dx
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f
N,, 	 tial energy, and dissipation energy in terms of time dependent

+ 
	

e 2 (x)p(x)A(x) 2 dx + 	 S edltmd[—Vt sin(Ht + ^d) 	 polynomial coefficients (an , b,) and their corresponding deriva-
 `° 1 ll 	fives (an ,bm). To find the equations of motion governing the

+ Wt cos(1it + (kd)] + md(ed) 2 11 2 }	 (7)	 rotor-bearing system, the Lagrangian approach is applied i.e.

Ue =2 f e EI[(V")2 + (W"") 2 ]dx 	 (8)
0

Nb

U6— {2K1//3Vi2+2KzzjW?+KyzjVjWj} 	 (9)
j= 1

The dissipation function (F) due to bearing damping is given
by

N,,
F=[2C b

YYj( Vjh ) 2 + 2 Czzj(Wj ) 2 + Cyzj Vj6 W b ]	 (10)
j=1

The denotation of parameters involved in equations (5)-(10)
are given in the Nomenclature.

The assumed modes technique for the undamped rotor-
bearing systems, proposed by Shiau and Hwang (1989), has

been generalized for damped systems using the following dis-
placement functions:

N„

V (x,t) _ E an (t)xn-1

n=1

N,,

W(x,t) _ :: bm (t)xm-1 	(11)
m=1

where the an (t) and bm (t) are generalized coordinates. The
corresponding rotational displacements, using equation (2), are
given by

N,,
r(xt)

	aV(x,t)
= ax	

_
	 (n — 1)x n Zan (t)
n=2

N°—8W (x, t) _
B(x,t) _ 	 (9x	 — E (m — 1 )xm-2 bm(t) ( 12 )

m=2

where the integer N P is the number of polynomials. As noted
in Shiau and Hwang (1989), the first two terms of the polyno-
lnial expansion of equation (11) must exist i.e. the associated
coefficients a l , a2i b l , b 2 can not be zero. The constant term,
the first two terms, and the first three terms of the expansion
represent a cylindrical mode, conical mode, and bending mode,
respectively. Moreover, if rigid body modes exist in the system,
the first two terms will be dominant. It should be noted that
other types of polynomials may be used as candidates for this
method. Trigonometric polynomials have been used with min-
imal success and other choices are under investigation. The
present method is also applicable to those systems with geo-
metric displacement constraints. The additional requirement
is to impose the required constraint or constraints. This will
be shown in the first example of single uniform shaft.

Substituting equations (11) and (12) and their derivatives
into equations (5)-(10), gives the total kinetic energy, poten-

	dt [8qt (T U)] q̂t (T U) + ^q = 0 	 (13)

where the generalized coordinates q ; are the an and b n, with
n, m = 1,N. For constant rotating speed, the equations of
motion may be expressed as follows:

I M 01 I ä 'L 	1

[C M J l 6 f +H L OC J^ 6 ^ + L C=v Czzj^ 6 ^

	+ L 0 K8] bJ + LKzy Kzzj J
q

b} — {R6}	 (14)

where the coefficient vectors a and b are

T

b={bl,...,bN„} T	(15a)

and the Np x Nl, component matrices, M, G, Cyy , C,8 , Czz , K8 ,
K, K58 , and Kzz are shown in Appendix A. The Np x 1,
forcing vectors, R a, and Rb are

Ra = {Ra i Ra2 ... RaN„}
T

Rb = {R11 Rb2 ... RbN,, } T 	(15b)

where

fRaj = 
	

e(x)p(x)A(x)2 cos(flt + O)x l dx

+ 	 edmdfl2 cos(Ilt + 0i)xi -1 	(15c)
i=1

Rbj 	 J e(x)p(x)A(x)[1 2 sin(Ht + (k)xj — 'dx

N,1

+	 edmd122 sin(ftt +
t-1

In this work, the shaft eccentricity is considered to be negligible.
Then the first term of the expressions Raj and Rb,, shown in
equation (15c), vanishes. In addition, the Np x Np damping and
stiffness matrices, C. and Ky8 , are considered as symmetric
i.e. Cyz = Czy and Ky8 = Key .

For the simplicity and convenience, the Ny x 1 complex
vector p and its conjugate p are introduced,

p=a+ib

P = a — ib 	 (16)

and equation (14) can then be rewritten as:

[M]j3 + ([C1] — iI[G])n + ([C2] + i[Cyzl )n_

+ ([K9] + [Ki])p + ([K2] + i[Kvz])P
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N,1
_ > ed,md02R1et(nt+O;)	 (17)

j=

where the N, x Np matrices [Kl],[K2],[C1], and [C2] are all real
and symmetric matrices and of the form

[K1] = ([K 	 [K33 ]) , [K2 ] = ([K5[ — [ K33 ])

[C1] = 2 ([Cyy ] + [ C33]), [C2 ] = — ([ C55 [ — [C33]) (18a)

and the force vector Rd is defined by

R, _ {R^i Rd2 ... RdNN 
z

(18b)

Rdk =^^ 1 , k=1,N5

CRITICAL SPEEDS AND STEADY STATE UN-
BALANCE RESPONSE

Critical Snoods

The critical speed of the damped system governed by equa-
tion (17) is calculated using the homogeneous form. Assume
the homogeneous solution of equation (17) to be of the form

1? = R feiWt + Rne—'wt 	 (19)

where w is the natural frequency or the whirl speed of the
system and substitute equation (19) into the homogeneous form
of equation (17), to obtain the following equations

(—w 2 [M[ + w1 [G[ + [K3 ] + iw[C l [)R f+

([K2] — w[CY3[ + i[K JZ ] + iw [ C2 ])R6 = 0 	 (20a)

(—w 2 [M] — wf2[G[ + [K3] — iw[C1])Rb

+ ([K2] + w[C, z ] + i[K53 ] — iw[C2])R f = 0 (20b)

where [K3 ] = [K,3 ] + [K 1 ]. For undamped orthotropic systems,
one can calculate the critical speeds by taking the conjugate of
equation (20b) and combining with equation (20a) to obtain

C [K3]	 [K21 + t[Kyz]
[K2 ] — t[Kyz ]	 [K3]

2 [M] — A[G] 	 0Rf = {
w 0 [M[ + A[G] ] / { R6 } 0} (21 )

where A = W is the spin/whirl ratio. Setting A to a specified
value and solving the eigenvalue problem governed by equation
(21), provides the critical speeds of the rotor bearing system.
The whirl speeds can also be obtained by rewriting equation
(14) in the first order form

[M] 0 0 0
0 [M] 0 0 b +
o o [I] 0 a
o o 0 [I] ¢

[Cy5[ 	 [Cyz] + 1z[G] [Ks] + [Kyy[ 	 [Ku,]
[C=y] — 1l[G] 	 [C==] 	 [K=y]	 [K8] + [K,, ]

—[I]	 0 	 0 	 0
0 	 —[I] 	 0 	 0

6

a

= {0} 	 (22)
a
b

and directly solving equation (22) for specified rotation speeds.

Steady State Unbalance Response
The steady state unbalance response of the system gov-

erned by equation (17) can be assumed of the form

P = Q fe 'ttt + Qbe—int 	 (23)

where Q f and Q b are complex vectors which describe the am-
plitude and phase of forward and backward circular motion, re-
spectively. Substituting equation (23) into equation (17), gives

Nd

[Al[ Q f + [B 1 ]Q b =	 edmd122R1 e'Ojd	 (24a)
i= 1

[A2[Q b + [B2 ]Q 1 = 0 	 (24b)

where the Np x N5 matrices [A 1 ], [A 2 [,[B 1 ], and [B 2 ] are of the
form

[A1] = —51 2 [M] + 11 2 [G[ + [K,] + [K1] +iSt[C1]

[A2]= —52 2 [M[ — 11 2 [G] + [K,] + [K 1 ] — if2[Ci]

[B1] = [K2] — fz[C53] + i([Ky3] + Ii[G1])

[B2] = [K2 ] + 1l[C53 ] + i([Kyz] — 1l[C2]) 	 (25)

Solving for Q b from equation (24b) in terms of Q f and substi-
tuting into equation (24a), one obtains

N,1

	Q f = Eegm^^ 2 ((All — [B1][]) 'R^e` 	 (26)
i=1

where the N5 x Np matrix [T[ is the conjugate of

[T[ _ [A2] ' [B2[ 	 (27)

The backward component of steady state unbalance response
can be obtained by substituting equation (26) into equation
(24b) and solving for Q b .

NUMERICAL EXAMPLES AND RESULTS

Three rotor-bearing systems are used to illustrate the accu-
racy and the efficiency of the generalized polynomial expansion
method (GPEM). The first is a single uniform shaft supported
by identical bearings with internal damping. The second is
a multi-stepped rotor system with orthotropic bearings. Fi-
nally, a dual rotor system with intershaft bearing is considered.
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The results for the three examples are presented in tabular and
graphical form for various numbers of polynomial terms.

Single Uniform Shaft
A simply supported steel shaft studied by Lund (1974a)

and Glasgow and Nelson (1979), is used as a basic example to
examine the accuracy and the efficiency of the present method.
Firstly, the shaft with two rigid simple supports at two ends is
considered. The exact solution for whirl speeds can be derived
as

_^GAJ4
 El l	 (nit)4 	( )

w 	1 1 + (nir) 2 Ae, (1 — 2a) n = 1, 2, ... 	 28

where all the parameters are defined in the Nomenclature. Be-
fore applying the present method, it is noted that the choices of
the assumed modes for translational deformations in equation
(11) are arbitrary, and equations (14) and (21) can be applied
to a rotor system with no geometrical constraints. However, ge-
ometric constraints are introduced to this example as follows:

[B]a = 0 and [B]b = 0	 (29)

where the matrix [B] is of the form

1 (xi) 	 (xi)2 	 ... (x i)No-1

[B] 	1	 (x2) 	 (_a)2 	 ...	 (x )N,, -1 ] 	 (30)

with x and x2 denote the axial positions of the two supports.
Then, one can obtain the following expressions

a= [R]  a I , b= [R J bi 	(31)

where

r 1 x 1 -1 1 (x ) 2 (x1)3 	
(x1)N! -11[

R 
] — 	 I	

Xb	
(32 )

	( x2) 2 	(x	 ...2) 3	(x2)NY-1L1 
and

aj = {a 3 a4 ... , aN } 	 (33)
bT _ {b3 b4 • • • , bN ,. }

Substituting equation (31) into equation (14) and premultiply-
ing equation (14) with the transpose of the transformation ma-
trix [R I]T in equation (31), the governing equations of a rotor
system with geometrical requirements are obtained. The fol-
lowing numerical results are obtained for the parameter value
1/Af2 = 1/64. Tables 1 and 2 show the comparison of whirl
speeds obtained by present method, FEM, and the exact so-
lution from equation (28) with whirl ratio A = —1 and 1, re-
spectively. It should be noted that the FEM employed in this
study deals with the same energy contribution as in GPEM. In
addition, the same eigensolver, EIGZS (IMSL, 1984), is applied
for the calculation of whirl speeds for both methods. The re-
sults indicate that with the same degrees of freedom, the whirl
speeds obtained by the present method are always more accu-
rate than those obtained by the FEM.

Secondly, the two supports are considered to be identi-
cal flexible bearings. The stiffness coefficients of the bearings
are K = KZZ = 1.7513 x 107 N/m, Ky. = Kzy = —2.917
x 10°N/m and the damping coefficients are Cyy = C,Z = 1.752 x

103N • s/m and C y, = Czy = O.ON • s/m. The shaft is of diam-
eter d=10.16 cm and length t=127 cm. Consider the eigenval-
ties of equation (22) to be a r = a r ±iwr and the log decrements
b, of the damped precessional modes to be defined by

—2lrar
	(br = 	 (34)

Wr

The density and the elastic modulus are p = 0.7833 x
104 Kg/m3 and E = 0.2608 x 10 12 N/m 2 respectively. The re-
sults of the log decrements (o r ), the whirl speeds (w r ), and
the CPU time on a VAX 785 at a rotation speed of 12 = 400.0
rad/sec are shown in Table 3 for the present method and in Ta-
ble 4 for the finite element method (FEM). It should be noted
that the CPU time calculated is based on the same eigensolver,
EIGZF (IMSL, 1984). The results indicate that the conver-
gence is very fast using GPEM. A comparison of whirl speeds
using GPEM and FEM is shown in Figure 2. It shows a very
good agreement between using GPEM and FEM. However the
results shown in Tables 1-4 indicate that it is computation-
ally more efficiency to use the GPEM. Figures 3-4 show the
undamped eigen-modes of the system for fl =1000.0, 5000.0
tad/sec respectively. Each shows four modes with forward
(clockwise) motion and backward (counterclockwise) motion at
certain rotation speed. The results show that the gyroscopic
effect will increase when the rotation speed is increased and the
motion will tend to be circular motion if the rotation speed is
very large.

Multi — Stepped Rotor System

The rotor bearing system studied by Nelson and McVaugh
(1976), is used to illustrate the merits of the pressent method
for the determination of whirl speeds and unbalance response.
The configuration of the rotor system and the corresponding
data are shown in Figure 5 and Table 5 respectively. Tables 6
and 7 show the undamped whirl speeds using FEM and GPEM,
and the log decrements and damped whirl speeds using FEM
and GPEM, respectively. The whirl map for these methods is
given in Figure 6. The results for FEM are obtained from a
model with 18 elements and for GPEM are obtained from 17
polynomial terms. They show that the percentage of difference
for the whirl speed is smaller than 6%. However the values
of CPU time required is quite different. This indicates that
considerable computing time can be saved using GPEM instead
of FEM.

Figures 7-8 show the first three undamped eigen-modes
for the rotation speed 12 = 1000.0, 5000.0 rad/sec respectively.
The results indicate that the increase of rotating speed will
significantly influence the second mode. The undamped and
damped steady state unbalance response are shown in Figures
9 and 10 with unit mass unbalance at the disc location, i.e.
e = 1, respectively. The results indicate that for rotation speeds
away from the critical speeds, the steady state responses are
approximately the same for both undamped and damped cases.
Also, when the rotation speed is large, the steady state response
tends to be in forward synchronous circular motion.
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Dual Rotor System

This example considers a dual rotor system with system
parameters as shown in Figure 11 (Rajan, et al., 1985). The in-
ner shaft with rotating speed 11 is denoted by Rotor 1, and the
outer shaft with rotating speed f 2 = 1.511 1 is denoted by Rotor
2. Where the bearing supports are considered as isotropic and
undamped with stiffness coefficients values 26.2795 x 10 6 N/rn
for station 1-0, 17.519 x 106 N/m for stations 6-0 and 7-0, and
8.7598 x 10 6 N/m for station 4-10. The motion of the dual ro-
tor system is modelled by present method with N( i ) = 12 for
Rotor 1 and Np ( 2 ) = 8 for Rotor 2. Moreover, each shaft can
be treated as a substructure and the boundary coordinates are
defined as the coordinates at bearing positions. The system
equations of motion can be obtained by assembling the equa-
tions of each component. Table 8 shows the whirl speed results
for various levels of modal trunction for 1 = 1500.0rad/sec.
Figure 12 shows the whirl speed map. The results indicate that
the first few forward and backward modes can be predicted with
high accuracy even with high levels of modal truncation.

Based on present analysis and numerical results, the fol-
lowing remarks can be made:
(1) The equations of motion of a rotor system modelled by the

present method generally require no geometric constraints.
For some problems, it is necessary to satisfy the geometric
boundary conditions. In these case, equation (29) can be
introduced to describe the geometric constraints.

(2) Numerical instability may occurs when a large number of
polynomial terms is chosen. To avoid the numerical insta-
bility, a similarity transformation can be applied to elim-
inate the scale of the difference between the elements in
system matrices before solving the eigenvalue problem.

Table 1 Comparison of whirl speeds of uniform shaft for
A=-1

Whirl Speeds Obtained by GPEM 	 I
urzft :

Whirl Speeds Obtained by FEM
	 ;̂E

A!
4

DOF=2 4 6 8 12 16 Exa. Sol.

9.0389 8.1631 8.1608 8.1608 8.1608 8.1608 8.1608
9.0389 8.1925 8.1673 8.1629 8.1612 8.1609
29.135 23.473 23.383 23.383 23.383 23.383 23.383
29.135 25.842 23.445 23.772 23.401 23.389

54.792 39.642 39.098 39.089 39.089 39.089
47.319 43.157 39.750 39.338 39.139
5.615 6.250 54.539 54.478 54.478 54.478

67.403 62.403 60.118 55.078 54.684
121.86 73.721 69.611 69.605 69.605
88.225 77.852 71.251 70.209
)fl 92.454 84.591 84.561 84.561
104.42 101.96 93.276 85.967

211.26 101.04 99.407 99.404
127.75 108.97 102.09
264.57 117.38 114.19 114.17
140.89 130.62 125.92

158.56 21 9.60 128.39
155.27 140.15
184.26 145.01 143.56
181.44 160.49

tDOF=Np -2 for GPEM&DOF=2xN, for FEM.
t GPEM is the present method.

(3) Other types of functions may be chosen as the assumed
modes, however, the generalized polynomials appear to be
the most convenient and yield accurate solutions.

CONCLUSIONS

Three rotor-bearing systems including a single spool ro-
tor and multi-shaft system have been studied to illustrate the
merits of using the generalized polynomial expansion method
(GPEM). The results for whirl speeds using the present method
show considerable computing time savings for large rotor sys-
tems. The steady state unbalance response for the undamped
and damped system is also studied and satisfactorily compared
to those using the FEM. Moreover, the GPEM can be regarded
as a global assumed modes method and can be applied to both
linear and nonlinear rotor-bearing systems. The merits and
procedures for using this method for analyzing nonlinear rotor-
bearing systems have been investigated and are presented in a
future paper.
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x, x

Figure 1 Typical rotor configuration and coordinates

Table 2 Comparison of whirl speeds of uniform shaft for
A=1

Whirl Speeds Obtained by GPEMEI
unit

Whzrl Speeds Obtained by FEM 	 pAl
q

DOF=2 4 6 8 12 16 Exa. Sol.

10.735 10.732 10.732 10.732 10.732 10.732
11.926 10.771 10.440 10.735 10.732 10.732
5.621 64.233 63.780 63.779 63.779 63.779 63.779

85.621 71.554 64.615 64.049 63.832 63.796
Tvur =[v -2torUFEM&DOF=2xNe forFEM.
I GPEM is the present method.
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Figure 2 The whirl map using FEM and GPEM for unifrom

rotor system

Table 3 The results of log decrements, whirl speeds, and

CPU time using GPEM for fl = 400.0 rad/sec

Log Decrements (8,), Whirl Speeds (w,), CPU Time (sec.)

Ny Forward Backward
CPU (sec.)

6, w,(rad/sec) 6, w,(rad/sec)

0.0853 540.85 0.1169 497.05
6 0.2924 1160.7 0.3479 1020.7 3.08

0.2683 2330.6 0.2797 2209.2
0.1235 5245.3 0.1224 5180.2

0.0852 540.84 0.1169 497.04
7 0.2924 1160.7 0.3479 1020.7

0.2577 2299.4 0.2697 2182.5
3.96

0.1235 5245.3 0.1224 5180.2

0.0852 540.84 0.1169 497.04
8 0.2923 1160.6 0.3479 1020.7

0.2577 2299.4 0.2697 2182.5
4 7B

0.1123 5087.8 0.1114 5028.3

0.0852 540.84 0.1169 497.04
9 0.2923 1160.6 0.3479 1020.7

0.2577 2299.3 0.2697 2182.5
6.30

0.1123 5087.8 0.1114 5028.3
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Figure 3 First four eigenmodes for rotation speed fl = 1000.0

rad/sec

Table 4 The results of log decrements, whirl speeds, and

CPU time using FEM for fl = 400.0 rad/sec

Log Decrements (6,), Whirl Speeds (w,), CPU Time (sec.)

N. Forward Backward
CPU (sec.)

6, w,(rad/sec) 6, w,(rad/sec)

0.0831 545.86 0.1214 492.68
2 0.2951 1183.1 0.3614 1010.4

3 28
0.2601 2318.6 0.2738 2176.2
0.1071 5748.1 0.1062 5681.2

0.0827 544.98 0.1209 492.04
3 0.2881 1175.9 0.3564 1006.1

5.35
0.2603 2321.4 0.2744 2178.8
0.1113 5113.9 0.1100 5046.4

0.0826 544.83 0.1208 491.93
4 0.2892 1174.6 0.3555 1005.3

8.02
0.2579 2315.0 0.2723 2173.6
0.1143 5123.1 0.1130 5053.9

0.0826 544.79 0.1208 491.90
5 0.2879 1174.2 0.3553 1005.0

0.2571 2312.7 0.2715 2171.7
12.23

0.1134 5107.4 0.1122 5038.7

* Np = Number of polynomials 	 * N. = Number of elements
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Table 5 Multi-stepped rotor configuration data

Node 	 Outer 	 Inner
Element location 	 Bearing/ 	 radius 	 radius
node no. (cm)	 disk 	 (cm)	 (cm)

1	 -17.90 0.51

2	 -16.63 1.02

3	 -12.82 0.76
4	 -10.28 2.03

5	 -9.01 Disk No.1 2.03
6 	 -7.74 3.30

7	 -7.23 3.30	 1.52

8	 -6.47 2.54	 1.78

9	 -5.20 2.54

10	 -4.44 1.27

11	 -1.39 Bearing No.1 1.27
12 	 1.15 1.52
13 	 4.96 1.52
14	 8.77 1.27
15	 10.80 Bearing No.2 1.27
16 	 12.58 3.81
17	 13.60 2.03

18 	 16.64 2.03	 1.52
19 	 17.91

Distributed rotor:
No. 	 Density (kg/m 3 ) 	 Elastic modulus (N/m 2 )

1 	 7806 	 2.078 x10''

Disk:
Location 	 Mass 	 Polar inertia 	 Diametral inertia

No. 	 (cm) 	 (kg) 	 (kg m 2 ) 	 (kg m"- )
No.1	 -9.01 	 1.401 	 0.0020 	 0.0013b

Bearing:
	Location kvv = k==	 kr= = k=v 	 cvv = c== 	 cv= = c,.

No. 	 (cm) 	 (N/m)	 (N/m) 	 (Ns/m) 	 (Ns/m)
No.1 	 -1.39 	 3.503 x 10 7 -8.756 x 10 1 1.752 x 10 3 	0

No.2 	 10.08 	 3.503 x10 7 -8.756 6106 1.752 x 10 3 	0

Figure 4 First four eigenmodes for rotation speed 1) = 5000.0

rad/sec

Table 6 The whirl speeds and CPU time of undamped multi-
stepped rotor system using FEM and GPEM

Undamped
N. 	 Whirl GPEM FEM

Speed
Rotating 	 ✓.)
Speed R Forward Backward Forward Backward

1789.8 1488.1 1819.9 1541.1
2000.0 5160.8 4229.6 5026.2 4181.1

8601.5 7245.0 8149.6 6833.9

1816.5 1461.8 1852.6 1507.9
3000.0 5159.2 4227.2 5023.8 4176.5

8784.4 7107.6 8314.1 6704.1

1847.9 1430.9 1889.4 1470.4
4000.0 5156.8 4223.9 5020.2 4170.0

8997.3 6957.9 8503.2 6562.6

1882.1 1397.5 1928.0 1430.9
5000.0 5153.5 4219.6 5015.4 4161.6

9229.2 6806.4 8705.3 6420.0

1917.8 1362.7 1967.4 1390.6
6000.0 5149.1 4214.3 5008.9 4151.2

9474.2 6658.3 8913.5 6281.9

CPU Time 58.65 (sec) 474.22 (sec)

The unit of R and w, is rad/sec.

Table 7 The log decrements and the damped whirl speed of

multi-stepped rotor system using FEM and GPEM

Pfethods CPEM FEM

Rotating Forward Backward Forward Backward

Speed (U) 6, or, 6, or, 6, o, 6,

0.1327 1790.4 0.1972 1489.3 0.1169 1820.5 0.1609 1542.5

2000 0.4771 5166.2 0.7348 4227.8 0.4266 5034.3 0.6736 4187.6

0.6227 8538.9 0.6736 7168.8 0.5956 8114.6 0.6833 6770.1

0.1450 1817.0 0.1857 1463.0 0.1302 1853.3 0.1485 1509.3

3000 0.4778 5163.5 0.7320 4226.3 0.4299 5029.9 0.6686 4184.3

0.6112 8722.4 0.6824 7032.0 0.5793 8281.8 0.6923 6641.1

0.1568 1848.5 0.1747 1432.1 0.1422 1890.2 0.1378 1471.7

4000 0.4788 5159.6 0.7282 4224.0 0.4348 5023.5 0.6614 4179.6

0.5986 8936.4 0.6914 6882.8 0.5603 8474.9 0.7011 6500.4

0.1676 1882.7 0.1651 1398.6 0.1529 1928.9 0.1286 1432.0

5000 0.4803 5154.3 0.7231 4221.1 0.4416 5015.2 0.6522 4173.4
0.5852 9169.8 0.7001 6732.0 0.5392 8681.9 0.7089 6358.9

0.1776 1918.4 0.1564 1363.8 0.1628 1968.4 0.1207 1391.7
6000 0.4825 5147.4 0.7169 4217.5 0.4507 5004.6 0.6408 4165.5

0.5714 9416.5 0.7083 6584.8 0.5165 8895.7 0.7151 6222.4

CPU Time 60.0 (sec) 500.0 (sec)

The unit of 0 and u, is rid/sec.
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Figure 5 The configuration of multi-stepped rotor bearing
system
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Figure 6 The whirl map using FEM and GPEM for multi-
stepped rotor system
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Figure 7 First three eigenmodes of multi-stepped rotor sys-
tem for rotation speed fl = 1000.0 rad/sec

Figure 8 First three eigenmodes of multi-stepped rotor sys-

tem for rotation speed fl = 5000.0 rad/sec
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Rotating Speed of Rotor 2 (0 2 , rad/sec)
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Figure 9 Undamped steady state unbalance response due to
unit eccentricity
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Figure 10 Damped steady state unbalance response due to

unit eccentricity

m = 4.904Kg
Ip = 0.02712Kg - m 2 	m = 2.277Kg

ID = 0.01356Kg - m 2 	Ip = 0.00972Kg . m 2

Ip = 0.00486Kg • mZ

u	 u	 m = 4.203Kg
m = 3.327Kg 	 Ip = 0.02034Kg . m 2

Ip =0.01469Kg-m 2 	ID =0.01017Kg-m 2

Ip = 0.00734Kg . m 2

E = 2.069 x 10 11 N/m2 , p = 8304Kg/m 3

Rotor 1 	 Inner radius = 0.000cm 	 Outer radius = 1.52 tern
Il l = 1.5111

Rotor 2 	 In,ier radius = I.905cm 	 Outer radius = 2.540o

Figure 11 Schematic plot and parameter values of dual rotor

system
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Figure 12 The whipl map using GPEM for dual rotor system
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Table 8 Whirl speed results for various levels of modal trun-

cation of dual rotor system for fl = 1500.0 rad/sec

Mode No. Mt/M2=18/12 10/6 6/4 4/2 2/0
1t8 ;3 l 460.483 460.587 461.080 461.827 462.478
2tF ;F j 931.573 931.587 933.814 935.816 938.144

3 (B ;B I 1500.164 1500.557 1501.162 1502.007 1518.437
41F ;F J 1657.883 1657.963 1658.332 1661.702 1684.147
518 ;B ! 2191.757 2192.673 2198.312 2201.122 2252.444
6 1''I 2273.365 2274.252 2292.499 2299.289 2331.544
7(B ;8 I 2453.515 2454.822 2490.747 2501.737 2501.901
81B ;B I 2725.233 2729.219 2775.545 2789.907 2894.072
9tF;F^ 3224.073 3224.318 3232.292 3273.106 3299.574
101881 3354.284 3357.525 3404.565 3573.703 3966.219
11 1''l 4094.309 4094.792 4099.571 4123.738 4577.460
12tF ;F I 5880.484 5892.795 5921.292 6068.933 6387.456

Frequency
Error < 1.0% < 7.0%

(1). Superscripts [B; F[ denote that the whirl motion is backward for Rotor 1
and forward for Rotor 2 respectively.

(2). M 1 ,M2 : Number of retained constrained normal modes for Rotor 1
and Rotor 2, respectively.

(3). DOF = M, + M2 + 10.
(4). Unit of whirl speed is rad/. ec.
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APPENDIX A

The components of N, x Np matrices shwon in equation
(14) are of the form as follows:

e
M(m,n) = f p(x)A(x)xn+m-2 dx+

0

	f (n — 1)(m — 1)Ipxn+m_ 4 dx + 	 [md(xd)n+m_2+

 i=1

	(n — 1)(m — 1 )Ipi(x
d ) n+m-4

I	 (A — 1)

e
G(m, n) = I (n — 1)(m — 1)Ipxni -4 dx+

0
N,i

[(n — 1)(m — 1)Ip[(xd)n+m 4
1 	(A — 2)

i=1

Nb

CYy(rn,n) =	 ^'Yj (xJ )n+m-2 	(A — 3)

j=1

N,,
C (,nt n) _	 Cyz1 (xj)n+m-2 	 (A — 4)

j=1

Nb

C, (m, n) _ 	 c',j (xj )n+m-2 	(A — 5)

j=1

Ks (m, n) _

f (n  — 1)(n — 2)(m — 1)(m — 2)Elx m-C dx (A — 6)

N,,

Kyy(m , n) _	 kvvj (x 	 (A — 7)
j=1

N,,

Kyi (m, n) _ 	 kyZ1 (xb) n+m-2 	(A — 8)

2 =1

NbNb
KZZ ( rn n) _ ^` kb ,j (xb)n+m-2 	 (A — 9)

jL=•1
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