The design and experimental activity presented in this paper is related to a novel hybrid seal which is intended to work as a balance piston seal in an AMBs levitated high-pressure (about 300 bar delivery pressure) motor-compressor. The typical solution adopted for balance piston application is a damper seal (e.g. honeycomb seal), as the rotordynamic stability is a primary focus. However, due to interactions between the AMB controller and seal high stiffness level, the aforementioned selection is not so straightforward.

After a review of the state of the art it was found that a combination of some conventional geometries (e.g. labyrinth and honeycomb) can be adopted to achieve the desired target. The design was done using a novel tool combining the validated bulk flow codes for each geometry. Moreover, a CFD analysis, based on some literature references, was carried out as a final verification of the design.

The experimental activity was then performed at the Authors’ internal seal test rig. As in typical rotordynamic seal testing activity, the operating parameters leveraged to explore performance sensitivity are rotational speed, inlet pressure, pressure ratio and inlet swirl level. The outcome was satisfactory both in terms of leakage and rotordynamic coefficients.

This content is only available via PDF.
You do not currently have access to this content.