Abstract

When performing gas turbine diagnostics using Gas Path Analysis (GPA), a convenient way of extracting the degradations is by feeding the measured data from a gas turbine to a well-tuned gas turbine performance code, which in turn calculates the deltas on the chosen health parameters matching the measured inputs. For this, a set of measured parameters must be matched with suitable health parameters, such as deltas on compressor and turbine efficiency and flow capacity.

In aero engines, the number of sensors are in general limited due to cost and weight constraints and only the necessary sensors for safe engine operation are available. Some important sensors may have redundancy in case of a sensor loss but it is far from certain that this applies to all sensors available.

If a sensor malfunctions by giving false or no values, the functions using the sensor will be negatively affected in some way causing them to either synthesize a fictive measurement, changing operating scheme, going into a degraded operating mode or shutting down parts or the whole process. If an onboard diagnostic algorithm fails due to sensor faults it will lead to a decrease in flight safety, thus there is a need for a robust system.

This paper presents a strategy for automatic modifications of the gas turbine diagnostic matching scheme when sensors malfunction to ensure a robust function. When a sensor fault is detected and classified as malfunctioning, the gas turbine matching scheme is modified according to predefined rules. If possible, a redundant measurement replaces the faulty measurement. If not, the matching scheme will be modified by determining if any health parameters cannot be derived by the functional set of measurements and remove the least valuable health parameter while maintaining a working matching scheme for the remaining health parameters.

This content is only available via PDF.
You do not currently have access to this content.