Abstract

There is very little doubt that there has been a noticeable advance in heavy-duty industrial gas turbine technology for utility scale electric power generation in the last decade. In keeping with the first six decades of the technology (roughly 1950 through 2010), the main drivers in increasing thermal efficiency and megawatt ratings have been increasing turbine inlet temperature and airflow. In accordance with the basic thermodynamic principles governing the underlying Brayton cycle, compressor pressure ratio kept pace with them.

It is hard to quibble about the 40+ percent in rated thermal efficiency in simple cycle. If projected turbine inlet temperatures and cycle pressure ratios can be sustained in the field, current state-of-the-art in turbine hot gas path metallurgy, coatings and advanced film cooling techniques indeed support published ratings. Unfortunately, published combined cycle ratings are an altogether different matter. It is one thing to set the product line rating performance at an aggressive level with well-understood albeit optimistic assumptions such as very low water-cooled steam turbine condenser pressure with open-loop cooling. It is yet another thing to blatantly disregard fundamental laws of thermodynamics with outlandish performance ratings, which are unlikely to materialize even in the next decade or two cost-effectively (unless an unforeseen transformative step-change in technology materializes). In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that some, if not all, OEM ratings are losing touch with reality.

This content is only available via PDF.
You do not currently have access to this content.