A common requirement for engine structures designed in the aviation industry is the ability to withstand the limit and ultimate loads with a flaw of certain size. Thus, reliable prediction of failure load is of utmost importance. In this paper, predictions from several applicable failure criteria are compared with test results. The tests are carried out on simple coupons with a rectangular cross-section and containing a surface crack. Majority of the tests are carried out under tensile loads and a few under bending loads. The tests correspond to two titanium alloys and two nickel-based super-alloys. The tests span a wide range of temperature (room temp to 700° C), and two forms, namely, cast and forged. In total over 200 test results are obtained and compared with predictions. The predictive models include (i) elasto-plastic J-integral analysis through FEA (ii) Failure Assessment Diagram (R6v3 and SINTAP) (iii) elastic stress intensity factor (LEFM) and (iv) average stress over remaining cross-section. The comparisons demonstrate that the R6v3 FAD method provide a reasonable estimate of the failure load for the test coupon geometry with surface cracks. The average stress approach, though works well for purely tensile loading, cannot cope with bending-dominated loads. On the other hand, predictions from LEFM approach can be non-conservative by up to a factor of two.
Skip Nav Destination
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
June 11–15, 2018
Oslo, Norway
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5113-5
PROCEEDINGS PAPER
Failure Assessment of Test Coupons: Comparison Between Model Predictions and Test Results
Sushovan Roychowdhury,
Sushovan Roychowdhury
GKN Aerospace Engine Systems, Trollhättan, Sweden
Search for other works by this author on:
Tomas Månsson,
Tomas Månsson
GKN Aerospace Engine Systems, Trollhättan, Sweden
Search for other works by this author on:
Thomas Hansson
Thomas Hansson
GKN Aerospace Engine Systems, Trollhättan, Sweden
Search for other works by this author on:
Sushovan Roychowdhury
GKN Aerospace Engine Systems, Trollhättan, Sweden
Tomas Månsson
GKN Aerospace Engine Systems, Trollhättan, Sweden
Thomas Hansson
GKN Aerospace Engine Systems, Trollhättan, Sweden
Paper No:
GT2018-75734, V07AT31A005; 11 pages
Published Online:
August 30, 2018
Citation
Roychowdhury, S, Månsson, T, & Hansson, T. "Failure Assessment of Test Coupons: Comparison Between Model Predictions and Test Results." Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics. Oslo, Norway. June 11–15, 2018. V07AT31A005. ASME. https://doi.org/10.1115/GT2018-75734
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Surface Flaw Reliability Analysis of Ceramic Components With the SCARE Finite Element Postprocessor Program
J. Eng. Gas Turbines Power (July,1987)
A Combination Rule for Circumferential Surface Cracks on Pipe Under Tension Based on Limit Load Analysis
J. Pressure Vessel Technol (April,2011)
Analysis of Surface Crack in Cylinder by Finite Element Alternating Method
J. Pressure Vessel Technol (May,2005)
Related Chapters
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Fourth Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition