It is a challenge to simulate the flow in a Variable Speed Power Turbine (VSPT), or, for that matter, rear stages of low pressure turbines at low Reynolds numbers due to laminar flow separation or laminar/turbulent flow transition on the blades. At low Reynolds numbers, separation induced-transition is more prevalent which can result in efficiency lapse. LES has been used in recent years to simulate these types of flows with a good degree of success. In the present work, very low free stream turbulence flows at exit Reynolds number of 220k were simulated. The geometry was a cascade which was constructed with the midspan section of a VSPT design. Most LES simulations to date, have focused on the midspan region. As the endwall effect was significant in these simulations due to thick incoming boundary layer, full blade span computation was necessitated. Inlet flow angles representative of take-off and cruise conditions, dictated by the rotor speed in an actual design, were analyzed. This was done using a second order finite volume code and a high resolution grid. As is the case with Implicit-LES methods, no sub-grid scale model was used. Blade static pressure data, at various span locations, and downstream probe survey measurements of total pressure loss coefficient were used to verify the results. The comparisons showed good agreement between the simulations and the experimental data.
Skip Nav Destination
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
June 11–15, 2018
Oslo, Norway
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5100-5
PROCEEDINGS PAPER
Implicit-LES Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions
Ali Ameri
Ali Ameri
Ohio State University, Cleveland, OH
Search for other works by this author on:
Ali Ameri
Ohio State University, Cleveland, OH
Paper No:
GT2018-77120, V02BT41A032; 12 pages
Published Online:
August 30, 2018
Citation
Ameri, A. "Implicit-LES Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions." Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery. Oslo, Norway. June 11–15, 2018. V02BT41A032. ASME. https://doi.org/10.1115/GT2018-77120
Download citation file:
42
Views
0
Citations
Related Proceedings Papers
Related Articles
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part II: The Application to a Highly Separated Turbine Blade Cascade Geometry
J. Turbomach (July,2011)
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
J. Turbomach (July,2011)
Predicting the Profile Loss of High-Lift Low Pressure Turbines
J. Turbomach (March,2012)
Related Chapters
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)