A twin-fluid atomizer configuration is predicted by means of the 2D weakly-compressible Smooth Particle Hydrodynamics (SPH) method and compared to experiments. The setup consists of an axial liquid jet fragmented by a co-flowing high-speed air stream (Ug ≈ 60 m/s) in a pressurized atmosphere up to 11 bar (abs.). Two types of liquid are investigated: a viscous Newtonian liquid (μl = 200 mPas) obtained with a glycerol/water mixture and a viscous non-Newtonian liquid (μl, apparent. ≈ 150 mPas) obtained with a carboxymethyl cellulose (CMC) solution. 3D effects are taken into account in the 2D code by introducing (i) a surface tension term, (ii) a cylindrical viscosity operator and (iii) a modified velocity accounting for the divergence of the volume in the radial direction. The numerical results at high pressure show a good qualitative agreement with experiment, i.e. a correct transition of the atomization regimes with regard to the pressure, and similar dynamics and length scales of the generated ligaments. The predicted frequency of the Kelvin-Helmholtz instability needs a correction factor of 2 to be globally well recovered with the Newtonian liquid. The simulation of the non-Newtonian liquid at high pressure shows a similar breakup regime with finer droplets compared to Newtonian liquids while the simulation at atmospheric pressure shows an apparent viscosity similar to the experiment.

This content is only available via PDF.
You do not currently have access to this content.