Rotor-dynamics of Micro Gas Turbines (MGTs) under 30 kW have been a critical issue for the successful development of reliable engines during the last decades. Especially, no consensus has been reached on a reliable MGT arrangement under 10 kW with rotational speeds above 100,000 rpm, making the understanding of the rotor-dynamics of these high speed systems an important research area. This paper presents a linear rotor-dynamic analysis and comparison of three mechanical arrangements of a 6 kW MGT intended for utilising Concentrated Solar Power (CSP) using a parabolic dish concentrator. This application differs from the usual fuel burning MGT in that it is required to operate at a wider operating speed range. The objective is to find an arrangement that allows reliable mechanical operation through better understanding of the rotor dynamics for a number of alternative shaft-bearings arrangements. Finite Element Analysis (FEA) was used to produce Campbell diagrams and to determine the critical speeds and mode shapes. Experimental hammer tests using a new approach based on optical sensing technology were used to validate the rotor-dynamic models. The FEA simulation results for the natural frequencies of a shaft arrangement were within 5% of the measurements, while the deviation for the shaft-bearings arrangement increased up to 16%.

This content is only available via PDF.
You do not currently have access to this content.