Experiments were performed at atmospheric pressure conditions on the prototype 4th generation DLE burner. The combustion changes that occur for alteration of the operating conditions by changing the equivalence ratios (ϕ) for CH4 as fuel at different sections of the burner, were optically investigated. The burner assembly has three concentrically arranged premixed burner sections: an outer Main section, an intermediate section (Pilot) and a central pilot body or pre-chamber combustor, called RPL (Rich-Pilot-Lean) section. All sections are facilitated to vary equivalence ratios to achieve optimal combustion. Planar laser-induced fluorescence (PLIF) of OH radicals and flame chemiluminescence imaging were applied to study the local flame characteristics in order to investigate turbulence-flame interaction and formation of reaction zone at the burner exit. The results show that the position and shape of the flame are clearly affected by the variation of equivalence ratios at different sections of the burner. During the experiments, first the RPL, then the Pilot and the Main flame were added in a step wise manner keeping constant the total air flow for the global ϕ = 0.5 in order to understand the flame contributions from the different combustion sections. It is observed that for the RPL fuel lean conditions, the primary combustion starts and reaches completion before exiting the burner throat while for rich conditions, the residual fuel escapes out through the RPL exit with primary combustion products and starts secondary combustion along with the Pilot and Main combustion. At the global ϕ = 0.5, for changing the RPL ϕ from lean to rich conditions, the flame stabilization region moves downstream of the burner exit and the flame front fluctuation along inner shear layer increases. For increasing the global ϕ and increasing the Pilot fuel ratio (PFR) without changing the RPL and the global ϕ, the total extension of the flame becomes shorter and the flame stabilization region moves upstream.
Skip Nav Destination
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
June 13–17, 2016
Seoul, South Korea
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4976-7
PROCEEDINGS PAPER
Laser-Based Investigation on a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions
Arman Ahamed Subash,
Arman Ahamed Subash
Lund University, Lund, Sweden
Search for other works by this author on:
Robert Collin,
Robert Collin
Lund University, Lund, Sweden
Search for other works by this author on:
Jens Klingmann
Jens Klingmann
Lund University, Lund, Sweden
Search for other works by this author on:
Arman Ahamed Subash
Lund University, Lund, Sweden
Robert Collin
Lund University, Lund, Sweden
Marcus Aldén
Lund University, Lund, Sweden
Atanu Kundu
Lund University, Lund, Sweden
Jens Klingmann
Lund University, Lund, Sweden
Paper No:
GT2016-57242, V04BT04A005; 12 pages
Published Online:
September 20, 2016
Citation
Subash, AA, Collin, R, Aldén, M, Kundu, A, & Klingmann, J. "Laser-Based Investigation on a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions." Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Seoul, South Korea. June 13–17, 2016. V04BT04A005. ASME. https://doi.org/10.1115/GT2016-57242
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
J. Eng. Gas Turbines Power (April,2012)
Investigation of Auto-Ignition of a Pulsed Methane Jet in Vitiated Air Using High-Speed Imaging Techniques
J. Eng. Gas Turbines Power (February,2011)
FLOX ® Combustion at High Pressure With Different Fuel Compositions
J. Eng. Gas Turbines Power (January,2008)
Related Chapters
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables