Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer along with solid conduction determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the non-dimensional external surface temperature, known as overall effectiveness, of an endwall with non-axisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the impingement effectiveness alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and contoured endwall. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.
Skip Nav Destination
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
June 15–19, 2015
Montreal, Quebec, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5671-0
PROCEEDINGS PAPER
Overall Effectiveness and Flowfield Measurements for an Endwall With Non-Axisymmetric Contouring
Amy Mensch,
Amy Mensch
The Pennsylvania State University, University Park, PA
Search for other works by this author on:
Karen A. Thole
Karen A. Thole
The Pennsylvania State University, University Park, PA
Search for other works by this author on:
Amy Mensch
The Pennsylvania State University, University Park, PA
Karen A. Thole
The Pennsylvania State University, University Park, PA
Paper No:
GT2015-42706, V05AT10A011; 12 pages
Published Online:
August 12, 2015
Citation
Mensch, A, & Thole, KA. "Overall Effectiveness and Flowfield Measurements for an Endwall With Non-Axisymmetric Contouring." Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 5A: Heat Transfer. Montreal, Quebec, Canada. June 15–19, 2015. V05AT10A011. ASME. https://doi.org/10.1115/GT2015-42706
Download citation file:
28
Views
0
Citations
Related Proceedings Papers
Related Articles
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
J. Turbomach (April,2009)
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
J. Turbomach (April,2017)
Simulations of Multiphase Particle Deposition on a Gas Turbine Endwall With Impingement and Film Cooling
J. Turbomach (November,2015)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration