Flue gas recirculation in combined cycle power plants using hydrocarbon fuels is a promising technology for increasing the efficiency of the post combustion carbon capture and storage process. However, the operation with flue gas recirculation significantly changes the combustion behavior within the gas turbine.

In this paper the effects of external flue gas recirculation on the combustion behavior of a generic gas turbine combustor was experimentally investigated. While prior studies have been performed with natural gas, the focus of this paper lies on the investigation of the combustion behavior of alternative fuel gases at atmospheric conditions, namely typical biogas mixtures and syngas. The flue gas recirculation ratio and the fuel mass flow were varied to establish the operating region of stable flammability.

In addition to the experimental investigations, a numerical study of the combustive reactivity under flue gas recirculation conditions was performed.

Finally, a prediction of blowout limits was performed using a perfectly stirred reactor approach and the experimental natural gas lean extinction data as a reference. The extinction limits under normal (non-vitiated) and flue gas recirculation conditions can be predicted well for all the fuels investigated.

This content is only available via PDF.
You do not currently have access to this content.