Some optimal operation methods based on the mixed-integer linear programming have been proposed to operate energy supply plants properly from the viewpoints of economics, energy saving, and CO2 emission reduction. However, most of the methods are effective only under certain energy demands. In operating an energy supply plant actually, it is necessary to determine the operational strategy properly based on predicted energy demands. In this case, realized energy demands may differ from the predicted ones. Therefore, it is necessary to determine the operational strategy so that it is robust against the uncertainty in energy demands. In this paper, an optimization method based on the mixed-integer linear programming is proposed to conduct the robust optimal operation of energy supply plants under uncertain energy demands. The uncertainty in energy demands is expressed by their intervals. The operational strategy is determined to minimize the maximum regret in the operational cost under the uncertainty. In addition, a hierarchical relationships among operation modes and on/off states of equipment, energy demands, and energy flow rates of equipment are taken into account. First, a general formulation of a robust optimal operation problem is presented, which is followed by a general solution procedure. Then, in a numerical study, the proposed method is applied to a gas turbine cogeneration plant for district energy supply. Through the study, some features of the robust optimal operation are clarified, and the validity and effectiveness of the proposed method are ascertained.

This content is only available via PDF.
You do not currently have access to this content.