This paper deals with the use of the infinite line pressure probes (ILP) to measure fluctuating pressures in hot environments in turbomachinery applications. These probes, sometimes called waveguide measuring systems, and composed of a series of lines and cavities are using a remote pressure sensor. Ideally they should form a non-resonant system. This is however not always the case and the frequency response of these systems is of course limited by the tubing (diameter and length) but is also highly dependent on other geometrical parameters like sudden expansions or discontinuities in the tubing, or parasite cavities. The development of a new model for ILP simulation, based on the analogy between the propagation of the pressure waves in a line-cavity system and the electrical transmission line, is presented. Unlike the models based on the Bergh and Tijdeman equations, this approach allows the simulation of systems presenting parallel branches. This makes the model appropriate for the prediction of the frequency response of ILP. The model is validated by a comparison of the results with the theory of Bergh and Tijdeman, and with experimental results from the literature and from shock tube tests. Finally, the model is applied for the optimization of ILPs, representative of the systems used in the aeronautics industry, and compared to the experimental results performed on an axial compressor. In those tests, a typical ILP geometry is installed on the compressor casing to measure static pressure fluctuations in the rotor tip gap. Simultaneous measurements with a fast response flush-mounted sensor provided data for comparison and validation of the predicted transfer function.
Skip Nav Destination
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
June 11–15, 2012
Copenhagen, Denmark
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4467-0
PROCEEDINGS PAPER
On the Determination of the Transfer Function of Infinite Line Pressure Probes for Turbomachinery Applications
Nicolas Van de Wyer,
Nicolas Van de Wyer
Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium
Search for other works by this author on:
Jean-François Brouckaert,
Jean-François Brouckaert
Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium
Search for other works by this author on:
Rinaldo L. Miorini
Rinaldo L. Miorini
Johns Hopkins University, Baltimore, MD
Search for other works by this author on:
Nicolas Van de Wyer
Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium
Jean-François Brouckaert
Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium
Rinaldo L. Miorini
Johns Hopkins University, Baltimore, MD
Paper No:
GT2012-69563, pp. 883-894; 12 pages
Published Online:
July 9, 2013
Citation
Van de Wyer, N, Brouckaert, J, & Miorini, RL. "On the Determination of the Transfer Function of Infinite Line Pressure Probes for Turbomachinery Applications." Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation. Copenhagen, Denmark. June 11–15, 2012. pp. 883-894. ASME. https://doi.org/10.1115/GT2012-69563
Download citation file:
21
Views
0
Citations
Related Proceedings Papers
Related Articles
Experimental Analysis of a Waveguide Pressure Measuring System
J. Eng. Gas Turbines Power (April,2010)
The Development of Fast Response Aerodynamic Probes for Flow Measurements in Turbomachinery
J. Turbomach (October,1995)
Related Chapters
Siphon Seals and Water Legs
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1
Study on Colors of High-Voltage Electricity Transmission Towers Based on Computerized Graphic Simulation
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)