The conventional Brayton CPC (constant pressure combustion) cycle engines have almost reached maturity in terms of thermal efficiency and SFC (specific fuel consumption). With environmental norms taking the front seat in civilian applications, the goal is to think of innovative concepts that are faster, cheaper, cleaner and quieter. Among many proposed concepts, the patented wave rotor – PDE (pulse detonation engine) combined combustor has generated much interest of producing a workable Humphrey CVC (constant volume combustion) cycle engine, with the potential to replace the conventional CP combustor with its inherently higher thermal efficiency, which translates to lower SFC, fuel burn and thus lower CO2 emissions. However, with the higher flame temperatures and pressure gain (i.e.: pressure rise minus pressure losses) in the combustor, the NOx emissions are expected to increase, but at the same time limited by the lower residence times on account of detonative combustion. This study seeks to investigate if the NOx will indeed rise even with shorter residence times. ACARE (Advisory Council for Aeronautics Research in Europe) has set ambitious goals to reduce the LTO (landing and take-off) NOx by 80% by 2020. This study mainly considers the overall NOx emissions besides the LTO NOx, which is not currently regulated, but steps are being taken towards covering this in future revisions of the regulations. The approach used is to develop a performance-based emissions model that could be used for the CVC engine, and also for the conventional CPC baseline engine, in order to compare both using a multidisciplinary design tool (PMDF) for a medium-haul flight of 2500 nm. PMDF is coupled to an optimiser in order to assess and optimise the CVC for best fuel burn and NOx emissions without compromising on thrust. The results of this preliminary study does indeed show an increase in NOx emissions index, but interestingly, it also shows that the overall emissions are reduced when comparing the two engines at bypass ratios higher than 7. Moreover, there are strategies to reduce NOx formation in parallel to techniques used today.
Skip Nav Destination
ASME Turbo Expo 2009: Power for Land, Sea, and Air
June 8–12, 2009
Orlando, Florida, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4885-2
PROCEEDINGS PAPER
Feasibility Study of a Conventional Turbofan With a Constant Volume Combustor
Fernando Colmenares Quintero,
Fernando Colmenares Quintero
Cranfield University, Cranfield, Bedfordshire, UK
Search for other works by this author on:
Aristo Coutinho,
Aristo Coutinho
Cranfield University, Cranfield, Bedfordshire, UK
Search for other works by this author on:
Stephen Ogaji,
Stephen Ogaji
Cranfield University, Cranfield, Bedfordshire, UK
Search for other works by this author on:
Riti Singh,
Riti Singh
Cranfield University, Cranfield, Bedfordshire, UK
Search for other works by this author on:
Nestor A. Pincay Gordillo,
Nestor A. Pincay Gordillo
Universidad Auto´noma de Occidente, Cali, Colombia
Search for other works by this author on:
Juan Carlos Herna´ndez Pin˜a
Juan Carlos Herna´ndez Pin˜a
Escuela Colombiana de Carreras Industriales, Bogota´, Colombia
Search for other works by this author on:
Fernando Colmenares Quintero
Cranfield University, Cranfield, Bedfordshire, UK
Aristo Coutinho
Cranfield University, Cranfield, Bedfordshire, UK
Stephen Ogaji
Cranfield University, Cranfield, Bedfordshire, UK
Riti Singh
Cranfield University, Cranfield, Bedfordshire, UK
Nestor A. Pincay Gordillo
Universidad Auto´noma de Occidente, Cali, Colombia
Juan Carlos Herna´ndez Pin˜a
Escuela Colombiana de Carreras Industriales, Bogota´, Colombia
Paper No:
GT2009-59097, pp. 59-76; 18 pages
Published Online:
February 16, 2010
Citation
Colmenares Quintero, F, Coutinho, A, Ogaji, S, Singh, R, Pincay Gordillo, NA, & Herna´ndez Pin˜a, JC. "Feasibility Study of a Conventional Turbofan With a Constant Volume Combustor." Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine. Orlando, Florida, USA. June 8–12, 2009. pp. 59-76. ASME. https://doi.org/10.1115/GT2009-59097
Download citation file:
13
Views
Related Proceedings Papers
Modified Brayton Cycle for Turbofans
GTINDIA2019
Related Articles
Assessment of Future Aero-engine Designs With Intercooled and Intercooled Recuperated Cores
J. Eng. Gas Turbines Power (January,2011)
Advanced Catalytic Pilot for Low NO x Industrial Gas Turbines
J. Eng. Gas Turbines Power (October,2003)
Assessment of CO 2 and NO x Emissions in Intercooled Pulsed Detonation Turbofan Engines
J. Eng. Gas Turbines Power (January,2019)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential