Experiments to determine heat transfer coefficients and friction factors are conducted on a stationary 45 deg parallel rib roughened square channel which simulates a turbine blade internal coolant passage. Copper plates fitted with silicone heaters and thermocouples are used to measure regionally averaged heat transfer coefficients. Reynolds numbers studied range from 30,000 to 400,000. The ribs studied have rounded (filleted) edges to account for manufacturing limitations of actual engine blades. The rib height (e) to hydraulic diameter (D) ratio (e/D) ranges from 0.1 to 0.2; spacing (p) to height ratio (p/e) ranges from 5 to 10. Results indicate an increase in heat transfer due to ribs at the cost of a higher friction factor, especially at higher Reynolds Numbers. Round edged ribs experience a similar heat transfer coefficient and a lower friction factor compared to sharp edged ribs, especially at higher values of rib height. Correlations predicting Nu and f as a function of e/D, p/e and Re are presented. Also presented are correlations for heat transfer and friction roughness parameters (G and R).

This content is only available via PDF.
You do not currently have access to this content.