The life monitoring concept needs on-line calculation to evaluate stresses and temperatures on aircraft engine components, in order to asses fatigue damage accumulation and residual life. Due to the amount of computational time required it is not possible for a full finite element model to operate in real time using the on-board CPU. Stresses and temperatures are then evaluated by using simplified algorithms. In the present work Guyan reduction and component mode synthesis have been applied to a thermal finite element model, including the cooling stream flow — the so called advection network — in order to reduce the size of the solving equation system. The appropriate mathematical formulation for the advection network reduction has been developed. Two reduction methods have been performed, discussed and subsequently applied to a thermal finite element model of a real low pressure turbine disk. The reduced system includes both the disk and the correlated fluid network model, simulating turbine secondary air system. The finite element model is axi-symmetric, with constant convective coefficients. Results of time integration for the reduced and the complete models have been compared. Results show that the proposed techniques gives models with a reduced number of degrees of freedom and at the same time good accuracy in temperature calculation. The reduced models are then suitable for real time computation.

This content is only available via PDF.
You do not currently have access to this content.