Proton Exchange Membrane (PEM) fuel cells rely on effective internal water transport to provide stable performance. Many water management schemes require high heat, high pressure, or high flow rates — effectively introducing parasitic losses and reducing round-trip efficiency. In this work, a radial, non-recirculating, unitized regenerative fuel cell prototype with passive water transport is designed and tested. The cell features a 5 cm2 active area with 1.2 mm wide by 0.6 mm high gas flow channels. Porous polymer wicks are fabricated in the cathode side flow channels and coupled with a bulk water storage structure. The resulting wicks are 0.3 mm wide and 0.6 mm high. Discharge operating voltage measured during current control testing resulted in 1 V at open circuit, 0.8 V at 0.3 A·cm−2, and 0.2 V at 1 A·cm−2. Charge operating current density measured during voltage control testing resulted in 0.1 A·cm−2 at 1.5 V, 0.3 A·cm−2 at 1.6 V, and 0.8 A·cm−2 at 2 V. During the membrane electrode assembly (MEA) conditioning procedure, degradation in operating current density is seen over a 30–100 minute time span.

This content is only available via PDF.
You do not currently have access to this content.