Abstract

This research will study a novel aspect of the physics of COVID-19 transmission associated with actively altering droplet size distribution. Viruses can be transmitted through droplets and aerosols released during speaking, sneezing, and coughing phenomena. We previously found that these distributions can be altered using food ingredients. The study will be carried out to study the hypothesis of relaxed guidance in social distancing and mask usage is possible with the proposed approach using CFD models of human sneezes. The adult human is positioned inside a ventilated room condition and the droplet/aerosols are to be released to explore the impacts of the various distributions that relate to how the food ingredients vary the function, hence, the size of the droplets will be the function of the use of food ingredients. Results study the concentration of droplet particles at various distances away from the mouth, also called exposure maps and indicate that Corn Starch and Xanthum usage increase the exposure intensity level, while Xanthum reducing the exposure area implies that social distancing can be reduced with its use. In contrast, the use of Lozenge and Zingiber reduces the exposure level, related to the increase in the viscosity and reduction of the mass flow rate of saliva.

This content is only available via PDF.
You do not currently have access to this content.