Abstract

In this work, numerical simulations are employed to study hydrodynamic interactions in trout-like three-dimensional (3D) fish bodies arranged in vertical and horizontal planes. The fish body is modeled on a juvenile rainbow trout (Oncorhynchus mykiss) and is imposed on a traveling wave to mimic trout swimming. Three typical minimal schools are studied, including the in-line, the side-by-side, and the vertical school. A sharp interface immersed-boundary-based incompressible Navier-Strokes flow solver is then used to quantitively simulate the resulting flow and hydrodynamic performance of the schools. The results show that the hydrodynamic efficiency of the leading fish in the in-line school increases by 5.28%, and the thrust production and efficiency of the side-by-side school are enhanced by 2.28% and 3.86%, respectively. Besides, the thrust production of the vertical school increases by 21.6%. The results suggest great potential in exploiting the hydrodynamic benefits in fish schools arranged in three-dimensional space.

This content is only available via PDF.
You do not currently have access to this content.