Abstract

An optimized heat exchanger design is always a challenge to designers. This study presents a simplified simulation study on thermal-hydraulic of a small heat exchanger. Both the heat transfer coefficient and pressure drop are simulated for a nine tube shell and tube heat exchanger. A detailed mesh sensitivity analysis is performed to arrive at numerically converged solution. The results of the study are compared with Bell Delaware (BD) and Flow Stream (FS) analytical methods. Results obtained using all three methods show similar trends. Heat transfer coefficient determined using Bell Delaware method is found to be in good agreement with that of ANSYS CFX, whereas pressure drop calculated using Flow stream method is within small percentage difference with CFX results. Overall, the simulation results are verified by the results obtained using analytical methods.

This content is only available via PDF.
You do not currently have access to this content.