The instability due to fluid flow in seals is a known phenomenon that can occur in pumps and compressors as well as in steam turbines. Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). Unlike the bulk flow models, computational fluid dynamics (CFD) makes no simplifying assumption on the seal geometry, shear stress at the wall, relationship between wall shear stress and mean fluid velocity, or characterization of interfaces between control volumes through empirical friction factors. This paper presents a method to calculate the linearized rotor-dynamic coefficients for a liquid seal with large aspect ratio (balance drum) subjected to incompressible turbulent flow by means of a three dimensional CFD analysis to calculate the fluid-induced forces acting on the rotor. The Reynolds-averaged Navier-Stokes equations for fluid flow are solved by dividing the volume of fluid into a discrete number of points at which unknown variables are computed. As a result, all the details of the flow field, including the fluid forces with potential destabilizing effects, are calculated. A 2nd order curve fit is then used to express the fluid-induced forces in terms of equivalent linearized stiffness, damping, and fluid inertia coefficients.

This content is only available via PDF.
You do not currently have access to this content.