In this paper, the behavior of a mechanical face seal is analyzed for different operating conditions and designs. For that, a theoretical model including a multiscale approach of the mixed lubrication regime, heat transfer and deformation of the seal rings is used. It has been possible to clearly identify the three different lubrication regimes of a mechanical seal: the mixed lubrication where the friction coefficient decreases, the rough hydrodynamic regime corresponding to an increasing friction and then the thermo-elasto-hydrodynamic (TEHD) regime for which the coefficient of friction is approximately constant. In this work, the influence of the fluid pressure, the seal roughness height, the balance ratio, the rings materials, the dry friction coefficient and viscosity are respectively examined. Generally speaking, the variation of these parameters affects the location of the optimum value of the friction coefficient in the mixed lubrication regime. In the TEHD regime, the temperature is mainly influenced by the materials and the fluid viscosity, which control the amplitude of deformation and heat transfer. A dimensionless parametric analysis has been carried out in order to perform an overall discussion of the results. It is shown that the mixed and rough hydrodynamic lubrication regimes are controlled by the modified duty parameter, while the TEHD regime is controlled by the sealing parameter.

This content is only available via PDF.
You do not currently have access to this content.