In this paper a novel approach to dynamic formulation of rovers has been presented. The complexity of these multi-body systems especially on rough terrain, challenged us to use the Kane’s method which has been preferred to others in these cases. As an example, symbolic equations of a six-wheeled rover, named CEDRA Rescue Robot which uses a shrimp like mechanism, have been derived and a simulation of forward and inverse dynamics has been presented. Due to the clear form of equations, each term defines a physical meaning which represents the effect of each parameter, resulting in a framework for performance comparison of rovers. Although the method has been described for a 2-D non-slipping case, it is also very useful for dimensional and dynamical optimization, high speed motion analysis, and checking various control algorithms. Furthermore, it can be extended to 3-D cases and other complicated mechanisms and rovers while conserving its inherent benefits and adding to it the easiness of handling nonholomonic constraints.

This content is only available via PDF.
You do not currently have access to this content.