Previous research at Sandia National Laboratories showed the potential advantages of using light-trapping features which are not currently used in direct tubular receivers. A horizontal bladed receiver arrangement showed the best potential for increasing the effective solar absorptance by increasing the ratio of effective surface area to the aperture footprint. Ray-tracing analyses using SolTrace were performed to understand the light-trapping effects of the bladed receivers, which enable re-reflections between the fins that enhance the effective solar absorptance. A parametric optimization study was performed to determine the best possible configuration with a fixed intrinsic absorptivity of 0.9 and exposed surface area of 1 m2. The resulting design consisted of three vertical panels 0.584 m long and 0.508 m wide and 3 blades 0.508 m long and 0.229 m wide with a downward tilt of 50 degrees from the horizontal. Each blade consisted of two panels which were placed in front of the three vertical panels. The receiver was tested at the National Solar Thermal Test Facility using pressurized air. However, the receiver was designed to operate using supercritical carbon dioxide (sCO2) at 650 °C and 15 MPa for 100,000 hours following the ASME Boiler and Pressure Vessel Code Section VIII Division 1. The air flowed through the leading panel of the blade first, and then recirculated toward the back panel of the blade before flowing through one of the vertical back panels. The test results of the bladed receiver design showed a receiver efficiency increase over a flat receiver panel of ∼5 – 7% (from ∼80% to ∼86%) over a range of average irradiances, while showing that the receiver tubes can withstand temperatures > 800 °C with no issues. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiencies. The predicted thermal efficiency and surface temperature values correspond to the measured efficiencies and surface temperatures within one standard deviation. In the near future, an sCO2 flow system will be built to expose the receiver to higher pressure and fluid temperatures which could yield higher efficiencies.

This content is only available via PDF.
You do not currently have access to this content.