Previous research at Sandia National Laboratories showed the potential advantages of using light-trapping features which are not currently used in direct tubular receivers. A horizontal bladed receiver arrangement showed the best potential for increasing the effective solar absorptance by increasing the ratio of effective surface area to the aperture footprint. Ray-tracing analyses using SolTrace were performed to understand the light-trapping effects of the bladed receivers, which enable re-reflections between the fins that enhance the effective solar absorptance. A parametric optimization study was performed to determine the best possible configuration with a fixed intrinsic absorptivity of 0.9 and exposed surface area of 1 m2. The resulting design consisted of three vertical panels 0.584 m long and 0.508 m wide and 3 blades 0.508 m long and 0.229 m wide with a downward tilt of 50 degrees from the horizontal. Each blade consisted of two panels which were placed in front of the three vertical panels. The receiver was tested at the National Solar Thermal Test Facility using pressurized air. However, the receiver was designed to operate using supercritical carbon dioxide (sCO2) at 650 °C and 15 MPa for 100,000 hours following the ASME Boiler and Pressure Vessel Code Section VIII Division 1. The air flowed through the leading panel of the blade first, and then recirculated toward the back panel of the blade before flowing through one of the vertical back panels. The test results of the bladed receiver design showed a receiver efficiency increase over a flat receiver panel of ∼5 – 7% (from ∼80% to ∼86%) over a range of average irradiances, while showing that the receiver tubes can withstand temperatures > 800 °C with no issues. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiencies. The predicted thermal efficiency and surface temperature values correspond to the measured efficiencies and surface temperatures within one standard deviation. In the near future, an sCO2 flow system will be built to expose the receiver to higher pressure and fluid temperatures which could yield higher efficiencies.
Skip Nav Destination
ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
June 26–30, 2017
Charlotte, North Carolina, USA
Conference Sponsors:
- Advanced Energy Systems Division
- Solar Energy Division
ISBN:
978-0-7918-5759-5
PROCEEDINGS PAPER
Design and Testing of a Novel Bladed Receiver
Jesus D. Ortega,
Jesus D. Ortega
Sandia National Laboratories, Albuquerque, NM
Search for other works by this author on:
Joshua M. Christian,
Joshua M. Christian
Sandia National Laboratories, Albuquerque, NM
Search for other works by this author on:
Clifford K. Ho
Clifford K. Ho
Sandia National Laboratories, Albuquerque, NM
Search for other works by this author on:
Jesus D. Ortega
Sandia National Laboratories, Albuquerque, NM
Joshua M. Christian
Sandia National Laboratories, Albuquerque, NM
Clifford K. Ho
Sandia National Laboratories, Albuquerque, NM
Paper No:
ES2017-3524, V001T05A007; 9 pages
Published Online:
August 25, 2017
Citation
Ortega, JD, Christian, JM, & Ho, CK. "Design and Testing of a Novel Bladed Receiver." Proceedings of the ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. ASME 2017 11th International Conference on Energy Sustainability. Charlotte, North Carolina, USA. June 26–30, 2017. V001T05A007. ASME. https://doi.org/10.1115/ES2017-3524
Download citation file:
31
Views
Related Proceedings Papers
Related Articles
Monte Carlo Ray Tracing-Coupled Computational Fluid Dynamic Modeling and Experimental Testing of a 1-kW Solar Cavity Receiver Radiated via 7-kW HFSS
J. Sol. Energy Eng (December,2020)
Monte Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for The Co-Production of Zinc and Syngas
J. Sol. Energy Eng (February,2005)
A Holistic Optimization of Convecting-Radiating Fin Systems
J. Heat Transfer (December,2002)
Related Chapters
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Later Single-Cylinder Engines
Air Engines: The History, Science, and Reality of the Perfect Engine