This paper describes the application of ‘passive house’ design principles to greenhouses, in order to provide the required thermal environment for fish and plant growth while eliminating the need for conventional cooling and heating systems. To do so, an experimental energy-efficient greenhouse with water-filled tanks that mimic an aquaponic system was designed and constructed using the ‘passive house’ design principles. The greenhouse was extensively instrumented and resulting data were used to verify and calibrate a TRNSYS dynamic simulation model of the greenhouse. The calibrated simulation model was utilized to design commercial-scale greenhouses with aquaponic systems in multiple climates. After relatively minor design and control modifications, the simulations indicate that these designs can provide the required thermal environment for fish and plant growth, while eliminating the need for conventional cooling and heating systems. The work demonstrates that the passive house standard can be applied to improve conventional greenhouse energy efficiency, and that it can be easily adapted to provide excellent performance in diverse climates.

This content is only available via PDF.
You do not currently have access to this content.