The current heating system in Yinchuan city, the capital of the Ningxia Autonomous Region in northwest China, is investigated and analyzed. Lacking an integrated planning, the heating systems have developed with low energy efficiency, high environment emission and economic cost. The choice of heating energy structure vary between coal and gas, the heating modes including gas-fired CHP, coal-fired CHP, gas-fired boiler and coal-fired boiler are facing challenges. In this paper, several innovative planning scenarios are proposed to achieve high energy efficiency, low environment emission and reasonable economic cost. In the heating schemes, three innovative technologies are designed. The first technology is waste heat recovery based on the Co-generation-based absorption heat-exchange (Co-ah) cycle. The waste heat can be both from circulating water or flue gas in CHP heating system and the industrial waste heat recovery. The second technology is the heating network with large temperature difference. The third technology is the gas distributed peak-shaving, gas-driven absorption heat-exchange in the substation.

This content is only available via PDF.
You do not currently have access to this content.