This paper presents two different control strategies for paper position control in printing devices. The first strategy is based on feedback linearization plus dynamic extension (dynamic feed-back linearization). Even though this controller is very simple to design, we show that it is not able to handle actuator multiplicative uncertainties, and therefore it fails when it is implemented on the experimental setup. The second strategy we present uses similar concepts, but it is more robust since feedback linearization is used only to linearize the kinematics of the system and internal loops are used to locally control the actuator’s positions and velocities. Not only do we prove the robustness of the second control strategy, but we also show its successful implementation.

This content is only available via PDF.
You do not currently have access to this content.