Wind turbines are nonlinear systems that operate in turbulent environments. As such, their behavior is difficult to characterize accurately across a wide range of operating conditions by physically meaningful models. Customarily, data-based models of wind turbines are defined in ‘black box’ format, lacking in both conciseness and physical intelligibility. To address this deficiency, we identify models of a modern horizontal-axis wind turbine in symbolic form using a recently developed symbolic regression method. The method used relies on evolutionary multi-objective optimization to produce succinct dynamic models from operational data without ‘a priori’ knowledge of the system. We compare the produced models with models derived by other methods for their estimation capacity and evaluate the tradeoff between model intelligibility and accuracy. Several succinct models are found that predict wind turbine behavior as well as or better than more complex alternatives derived by other methods.
- Dynamic Systems and Control Division
Automatic Identification of Closed-Loop Wind Turbine Dynamics via Genetic Programming
La Cava, W, Danai, K, Lackner, M, Spector, L, Fleming, P, & Wright, A. "Automatic Identification of Closed-Loop Wind Turbine Dynamics via Genetic Programming." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications. Columbus, Ohio, USA. October 28–30, 2015. V002T21A002. ASME. https://doi.org/10.1115/DSCC2015-9768
Download citation file: