Advances in the surgical and interventional management of children with congenital heart disease has improved survival and outcomes. Each such patient is born with specific anatomical variations which call for detailed evaluations so to plan for appropriate patient-specific management. Significant progress has been made in commercially available two-dimensional imaging – i.e. echocardiogram, CT, and MRI – yet using such, three-dimensional anatomical details can be difficult to accurately represent. In addressing this concern, it has been shown that patient-specific three-dimensional modeling can be useful for interventional procedural or surgical planning [1]. Here we present two cases for which patient-specific anatomical three-dimensional modeling and printing were utilized for (1) the pre-sizing and placement of stents within a complex bifurcation pulmonary artery stenosis; and (2) evaluating the candidacy of the patient’s anatomy for a transcatheter pulmonary valve placement. Detailed within this technical brief are de-identified case information, workflows for model generations, and results regarding clinical usage. In conclusion, we found these patient-specific models to be an advantageous resource for treatment planning in these two pediatric congenital heart disease cases.

This content is only available via PDF.