In this work, thermal conductivity of perfect and nanoporous few-quintuple Bi2Te3 thin films as well as nanoribbons with perfect and zig-zag edges is investigated using molecular dynamics (MD) simulations with Green-Kubo method. We find minimum thermal conductivity of perfect Bi2Te3 thin films with three quintuple layers (QLs) at room temperature, and we believe it originates from the interplay between inter-quintuple coupling and phonon boundary scattering. Nanoporous films and nanoribbons are studied for additional phonon scattering channels in suppressing thermal conductivity. With 5% porosity in Bi2Te3 thin films, the thermal conductivity is found to decrease by a factor of 4–6, depending on temperature, comparing to perfect single QL. For nanoribbons, width and edge shape are found to strongly affect the temperature dependence as well as values of thermal conductivity.

This content is only available via PDF.
You do not currently have access to this content.