As a method for simultaneously increasing efficiency of energy use and stability of energy supply in commercial buildings, we have proposed Totalized Hydrogen Energy Utilization System (THEUS) that uses hydrogen as a high potential for energy carrier. The hydrogen storage method used by this system adopts metal hydride that excels in volumetric storage density. In this paper, as the model case for electric power load leveling operation, the optimum design and optimum operation method for multiple metal hydride tanks are described with a mathematical model which can simulate operation of the metal hydride tank and experimental equipment. As a result, the combination of tank specifications and operating conditions that produce the effective simultaneous utilization of 1) hydrogen, 2) metal hydride and 3) heat are identified. Furthermore, an operating method to make the most of the metal hydride tank flexibility with respect to tank selection is determined.

This content is only available via PDF.
You do not currently have access to this content.